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Abstract
Background Sepsis is a severe form of systemic inflammatory response syndrome that is caused by infection. Sepsis 
is characterized by a marked state of stress, which manifests as nonspecific physiological and metabolic changes 
in response to the disease. Previous studies have indicated that the stress hyperglycemia ratio (SHR) can serve as 
a reliable predictor of adverse outcomes in various cardiovascular and cerebrovascular diseases. However, there is 
limited research on the relationship between the SHR and adverse outcomes in patients with infectious diseases, 
particularly in critically ill patients with sepsis. Therefore, this study aimed to explore the association between the SHR 
and adverse outcomes in critically ill patients with sepsis.

Methods Clinical data from 2312 critically ill patients with sepsis were extracted from the MIMIC-IV (2.2) database. 
Based on the quartiles of the SHR, the study population was divided into four groups. The primary outcome was 
28-day all-cause mortality, and the secondary outcome was in-hospital mortality. The relationship between the SHR 
and adverse outcomes was explored using restricted cubic splines, Cox proportional hazard regression, and Kaplan‒
Meier curves. The predictive ability of the SHR was assessed using the Boruta algorithm, and a prediction model was 
established using machine learning algorithms.

Results Data from 2312 patients who were diagnosed with sepsis were analyzed. Restricted cubic splines 
demonstrated a "U-shaped" association between the SHR and survival rate, indicating that an increase in the SHR 
is related to an increased risk of adverse events. A higher SHR was significantly associated with an increased risk of 
28-day mortality and in-hospital mortality in patients with sepsis (HR > 1, P < 0.05) compared to a lower SHR. Boruta 
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Introduction
Infectious diseases have long been at the forefront of 
global health challenges. Sepsis, which is a severe compli-
cation of infections, is closely associated with abnormal 
immune responses. Sepsis often leads to multiorgan dys-
function, thereby posing a threat to the lives of affected 
individuals [1]. Despite significant progress in the man-
agement of infectious diseases due to widespread anti-
biotic use and advancements in medical technology, the 
incidence of sepsis remains high, and its mortality rate is 
a cause for concern [2].

Stress hyperglycemia is a physiological phenomenon 
characterized by a significant increase in blood glu-
cose levels in response to physiological or pathological 
stress. This phenomenon is often associated with the 
regulation of hormone secretion, immune responses, 
and neural system activity. Stress hyperglycemia is typi-
cally linked to the release of hormones such as adrenaline 
and cortisol; furthermore, it is associated with insulin 
resistance and increased hepatic gluconeogenesis [3]. In 
some cases, stress hyperglycemia is an adaptive physi-
ological response that helps to provide energy for the 
body to cope with physiological or pathological stress. 
However, for patients with chronic diseases or those fac-
ing prolonged stress, this hyperglycemic state may be 
associated with unfavorable clinical outcomes. A previ-
ous study indicated an independent correlation between 
acute hyperglycemia upon admission and adverse out-
comes in the early and late stages of acute myocardial 
infarction (AMI) [4]. To explain and evaluate the impact 
of background blood glucose, researchers introduced 
HbA1c as a baseline glucose level when assessing stress 
hyperglycemia, and they proposed the stress hyperglyce-
mia ratio (SHR) as a new indicator to assess a more accu-
rate representation of acute hyperglycemia [5]. Previous 
studies have shown that in patients with acute coronary 
syndrome, critically ill patients, and patients with critical 
myocardial infarction, a higher SHR is associated with an 
increased risk of adverse outcomes [6–8].

Due to the abnormal activation of the immune system 
and the massive release of various cytokines in patients 
with sepsis, they often experience a state of stress [9]. 
However, it is currently unclear whether the SHR is cor-
related with adverse outcomes in critically ill patients 
with sepsis. Therefore, this study aimed to assess the 

association between the SHR and adverse outcomes in 
critically ill patients with sepsis.

Methods
Data source
The data utilized in this study are derived from MIMIC-
IV2.2, which is an electronic health record dataset 
encompassing over 50,000 patients admitted to the inten-
sive care unit (ICU) at Beth Israel Deaconess Medical 
Center (BIDMC) in Boston, Massachusetts, from 2008 to 
2019. The Institutional Review Board of BIDMC granted 
a waiver of informed consent and approved the sharing of 
research resources. The author (JLZ) obtained access to 
the database (certificate number: 45848364).

Inclusion and exclusion criteria
Inclusion Criteria:

1. Patients aged between 18 and 90 years.
2. Patients diagnosed with sepsis according to the 

recommendations of the Third International 
Consensus Definitions for Sepsis and Septic Shock 
(Sepsis-3).

Exclusion Criteria:

1. Patients with an ICU stay of less than 24 h.
2. Missing serum glucose and glycated hemoglobin in 

the first laboratory test.
3. For patients with multiple ICU admissions, only data 

from the first hospitalization were included.

Outcome
The primary outcome was 28-day all-cause mortality, and 
the secondary outcome was in-hospital mortality.

Data extraction
Data extraction was performed using pgAdmin soft-
ware. Patient characteristics, including age, sex, and 
weight, were collected. Information on comorbidities, 
such as hypertension, type 2 diabetes, type 1 diabetes, 
heart failure, malignancy, chronic kidney disease (CKD), 
stroke, pneumonia and septic shock, was extracted based 
on the International Classification of Diseases coding 

feature selection showed that SHR had a higher Z score, and the model built using the rsf algorithm showed the best 
performance (AUC = 0.8322).

Conclusion The SHR exhibited a U-shaped relationship with 28-day all-cause mortality and in-hospital mortality in 
critically ill patients with sepsis. A high SHR is significantly correlated with an increased risk of adverse events, thus 
indicating that is a potential predictor of adverse outcomes in patients with sepsis.
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system. Vital signs (heart rate, systolic blood pressure 
(SBP), respiratory rate, arterial oxygen saturation (SaO2) 
and laboratory tests [red blood cell count (RBC), white 
blood cell count (WBC), platelet count (PLT), serum 
sodium, serum potassium, serum calcium, anion gap, 
pH, carbon dioxide pressure (PaCO2), arterial oxygen 
pressure (PaO2), lactate, prothrombin time interna-
tional normalized ratio (INR), total bilirubin, aspartate 
aminotransferase (AST), blood urea nitrogen, serum 
creatinine, serum glucose, and glycosylated hemoglobin 
(HbA1c)] were extracted. The use of steroids (glucocor-
ticoids) was also extracted. Additionally, the severity 
of illness was assessed using the sequential organ fail-
ure assessment (SOFA). The stress hyperglycemia ratio 
(SHR) is defined as the index calculated using the follow-
ing formula: SHR = (admission blood glucose (mg/dl))/
(28.7 × HbA1c(%) − 46.7)] [5].

Statistical analysis
As the current study is a retrospective analysis, no sam-
ple size calculations were conducted. Variables with a 
missing data rate exceeding 20% were excluded, and for 
those with less than a missing data rate below 20%, mul-
tiple imputation was employed. The variance inflation 
factor (VIF) was used to assess multicollinearity among 
variables. Variables with a VIF exceeding 5 were removed 
due to multicollinearity concerns. Patients were catego-
rized into four groups based on quartiles of the SHR. 
Normally distributed continuous variables are presented 
as the means (standard deviations [SDs]) and were ana-
lyzed using analysis of variance (ANOVA). Nonnormally 
distributed variables were analyzed using the Mann‒
Whitney U test or the Kruskal‒Wallis test. Categori-
cal variables are expressed as numbers and percentages 
and were analyzed using the χ2 test or Fisher’s exact test. 
Kaplan‒Meier survival curves were used to compare the 
28-day survival rates among the four groups according to 
the log-rank test. Proportional hazard regression models 
(Cox regression models) were used to assess the hazard 
ratio (HR) and 95% confidence interval (95% CI) for event 
occurrence. Model I was unadjusted for covariates. To 
adjust for the impacts of patient general condition and 
vital signs, SOFA scores, and steroid use on outcomes, 
Model II was adjusted for age, weight, sex, heart rate, 
respiratory rate, systolic blood pressure, SOFA scores, 
and steroid use (glucocorticoids). The time-dependent 
receiver operating characteristic (ROC) curve was used 
to compare the SHR and laboratory indicators of each 
continuous variable. A two-tailed P value < 0.05 was con-
sidered to indicate statistical significance. Statistical anal-
yses were conducted using R software (version 4.3.1).

Restricted cubic splines
In this study, we collected data on survival (the out-
come variable); the SHR (the continuous predictor vari-
able); and age, weight, heart rate, SBP, respiratory rate, 
sex, SOFA scores and steroid use (the covariates). The 
potential nonlinear relationships between the change in 
the SHR and survival were examined by a Cox regression 
model with restricted cubic spline (RCS). Knots between 
3 and 7 were tested, and the model with the lowest 
Akaike information criterion value was selected for the 
RCS.

Subgroup analysis
A subgroup analysis was conducted based on prespeci-
fied criteria, including age, sex, and type 2 diabetes sta-
tus, and univariate analysis and multivariate analysis were 
performed. The multivariate analysis was adjusted for 
age, weight, sex, heart rate, respiratory rate, systolic blood 
pressure, SOFA scores, and steroids (glucocorticoids). 
The multivariable analysis of the male and female sub-
groups were not adjusted for sex. Patients were stratified 
into two groups based on age (< 65 years and ≥ 65 years). 
Cox proportional hazards regression analysis was per-
formed for each subgroup, and the results were visually 
presented using forest plots, illustrating hazard ratios 
(HRs) and 95% confidence intervals (CIs).

Establishment and validation of the prediction models
Boruta’s algorithm is a method used to determine the 
most important features in a dataset. It identifies impor-
tance by comparing the Z value of each feature with the 
Z value of the corresponding “shadow feature”. In the 
algorithm, all real features are copied and shuffled, and 
then the Z value of each feature is obtained through the 
random forest model. Additionally, the Z values of the 
‘shadow features’ are generated by randomly shuffling the 
real features [10]. If the Z value of a true feature is signifi-
cantly higher than the maximum Z value of the shadow 
feature in multiple independent tests, the true feature is 
marked as “important” (green area), also known as an 
acceptable variable. Otherwise, it is marked as “unim-
portant” (red area), also known as unacceptable variables. 
Acceptable variables are variables that are retained dur-
ing the feature selection process and are considered to 
contribute to the performance of the model. Unaccept-
able variables are excluded from the final feature selec-
tion by the algorithm because they fail to show predictive 
power for the target variable during the feature selec-
tion process. In addition, the Boruta algorithm was also 
used to explore the importance of the SHR as a predictor 
variable.

Acceptable variables are incorporated into the machine 
learning algorithm. The dataset was divided into train-
ing and validation sets at a 7:3 ratio. The filtered variables 



Page 4 of 13Yan et al. Cardiovascular Diabetology          (2024) 23:163 

were individually analyzed using the Cox Proportional 
Hazards Survival Learner (coxph) algorithm, Rpart Sur-
vival Trees Survival Learner (dt) algorithm, Survival 
DeepSurv Learner (deepsurv) algorithm, Survival Ran-
dom Forest SRC Learner (rsf ), and Extreme Gradient 
Boosting Survival Learner (xgboost) algorithm to predict 
the 28-day mortality risk in critically ill sepsis patients. 
Hyperparameter tuning is performed during the estab-
lishment of machine learning models. The training and 
validation sets were utilized for model establishment 
and evaluation, respectively. The ROC curve and its cor-
responding area under the curve (AUC) were used to 
determine model performance. Decision curve analysis 
(DCA) was employed for assessing clinical effectiveness, 
while calibration curves were used to evaluate the accu-
racy of the model in predicting absolute risk.

Results
Baseline characteristics
Data from 2,312 patients diagnosed with sepsis were 
extracted from the MIMIC-IV (Fig.  1). Table S1 dis-
plays the variance inflation factors, indicating that there 
was no multicollinearity among the variables. Figure S1 
illustrates the proportions of missing data for each vari-
able, and Table  1 presents the baseline characteristics 

of the study subjects. There were 1396 males (60.38%), 
1046 (45.24%) patients with hypertension, 906 (39.19%) 
patients with type 2 diabetes, 74 (3.2%) patients with 
type 1 diabetes, 805 (34.82%) patients with heart fail-
ure, 248 (10.73%) patients with malignancy, 450 (19.46%) 
patients with CKD, 327 (14.14%) patients with stroke, 
372 (16.09%) patients with septic shock and 925 (40.01%) 
patients with pneumonia. Patients were divided into 
quartiles: quartile 1 (0.21 ≤ SHR < 0.915), quartile 2 
(0.915 ≤ SHR < 1.14), quartile 3 (1.14 ≤ SHR < 1.45), and 
quartile 4 (1.45 ≤ SHR ≤ 7.41), with each group consist-
ing of 578 individuals. Patients in Quartile 4 exhibited a 
higher heart rate, white blood cell count, serum potas-
sium, anion gap, total bilirubin, aspartate aminotrans-
ferase, blood urea nitrogen, serum creatinine, lactate, 
SOFA score, and steroid use ratio as well as lower serum 
sodium, pH, and PaO2 levels.

Clinical outcomes
Regarding 28-day mortality and in-hospital mortality, 
Quartile 4 had higher mortality (Table  2). In the Cox 
regression analysis, the results of Models I and II showed 
that with Quartile 1 as the reference, the risk of mortal-
ity in Quartile 3 and Quartile 4 increased significantly 
(Table  3, Table  4). Kaplan–Meier curves revealed that 

Fig. 1 Selection of the study population from the MIMIC-IV database
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Characteristic
(Mean ± SD)

SHR p value2

Overall, N = 23121 Quartile 1, N = 5781 Quartile 2, N = 5781 Quartile 3, N = 5781 Quartile 4, N = 5781

Age (years) 65 ± 15 65 ± 14 65 ± 15 66 ± 15 64 ± 14 0.244
Weight (kg) 87 ± 26 87 ± 29 87 ± 24 86 ± 24 87 ± 25 0.588
SBP (mmHg) 127 ± 26 127 ± 24 127 ± 25 128 ± 26 125 ± 26 0.169
Heart Rate 90 ± 21 86 ± 20 88 ± 21 92 ± 20 94 ± 21  < 0.001
Respiratory rate 20.0 ± 6.2 19.4 ± 6.3 20.0 ± 6.0 20.3 ± 6.1 20.3 ± 6.4 0.058
WBC (10^9/L) 13 ± 7 11 ± 7 12 ± 7 14 ± 8 15 ± 8  < 0.001
RBC (10^9/L) 3.82 ± 0.79 3.86 ± 0.77 3.82 ± 0.74 3.85 ± 0.79 3.75 ± 0.86 0.078
PLT (10^9/L) 213 ± 103 219 ± 109 208 ± 95 214 ± 108 210 ± 101 0.241
Sodium (mmol/L) 138.4 ± 5.6 139.2 ± 4.9 138.5 ± 5.2 138.4 ± 5.5 137.8 ± 6.6  < 0.001
Potassium(mmol/L) 4.22 ± 0.81 4.19 ± 0.75 4.17 ± 0.78 4.17 ± 0.79 4.36 ± 0.90  < 0.001
Total calcium (mmol/L) 8.34 ± 0.86 8.39 ± 0.79 8.38 ± 0.79 8.35 ± 0.92 8.25 ± 0.92 0.030
Anion gap (mmol/L) 15.9 ± 4.4 14.9 ± 4.0 15.2 ± 3.9 16.0 ± 4.0 17.4 ± 5.1  < 0.001
PH 7.37 ± 0.10 7.38 ± 0.08 7.39 ± 0.09 7.37 ± 0.09 7.33 ± 0.11  < 0.001
PaCO2 (mmHg) 41 ± 11 42 ± 11 41 ± 10 41 ± 11 42 ± 11 0.066
PaO2 (mmHg) 149 ± 111 157 ± 112 161 ± 120 147 ± 107 132 ± 103  < 0.001
Lactate (mmol/L) 1.71 ± 1.38 1.77 ± 1.38 2.02 ± 1.46 2.92 ± 2.26  < 0.001
SaO2 (%) 96.86 ± 3.94 96.94 ± 3.61 96.96 ± 3.53 96.86 ± 3.45 96.70 ± 4.98 0.657
INR 1.40 ± 0.64 1.39 ± 0.59 1.39 ± 0.72 1.35 ± 0.54 1.46 ± 0.68 0.039
Total bilirubin 1.23 ± 3.30 0.83 ± 1.09 1.21 ± 3.26 1.28 ± 3.62 1.61 ± 4.28  < 0.001
AST (U/l) 190 ± 944 138 ± 573 155 ± 856 139 ± 567 326 ± 1,470  < 0.001
Urea nitrogen (mg/dL) 29 ± 22 27 ± 22 26 ± 20 28 ± 24 33 ± 23  < 0.001
Creatinine (mg/dL) 1.59 ± 1.68 1.49 ± 1.55 1.51 ± 1.59 1.47 ± 1.50 1.89 ± 2.00  < 0.001
SOFA 5.5 ± 3.3 4.8 ± 3.1 4.9 ± 3.2 5.5 ± 3.3 6.6 ± 3.5  < 0.001
Blood glucose (mg/dL) 177 ± 104 115 ± 45 139 ± 50 172 ± 62 283 ± 136  < 0.001
HbA1c (%) 6.60 ± 1.92 7.09 ± 2.30 6.37 ± 1.66 6.33 ± 1.70 6.62 ± 1.86  < 0.001
Gender 0.128
 Female 916 (39.62%) 233 (40.31%) 209 (36.16%) 248 (42.91%) 226 (39.10%)
 Male 1396 (60.38%) 345 (59.69%) 369 (63.84%) 330 (57.09%) 352 (60.90%)
Hypertension 0.004
 No 1266 (54.76%) 314 (54.33%) 310 (53.63%) 291 (50.35%) 351 (60.73%)
 Yes 1046 (45.24%) 264 (45.67%) 268 (46.37%) 287 (49.65%) 227 (39.27%)
Diabetes II  < 0.001
 No 1406 (60.81%) 332 (57.44%) 392 (67.82%) 366 (63.32%) 316 (54.67%)
 Yes 906 (39.19%) 246 (42.56%) 186 (32.18%) 212 (36.68%) 262 (45.33%)
Diabetes I  < 0.001
 No 2240 (96.88%) 553 (95.67%) 570 (98.61%) 572 (98.96%) 545 (94.29%)
 Yes 72 (3.11%) 25 (4.32%) 8 (1.38%) 6 (1.04%) 33 (5.71%)
Heart failure 0.146
 No 1507 (65.18%) 369 (63.84%) 391 (67.65%) 388 (67.13%) 359 (62.11%)
 Yes 805 (34.82%) 209 (36.16%) 187 (32.35%) 190 (32.87%) 219 (37.89%)
Malignant tumor 0.217
 No 2064 (89.27%) 515 (89.10%) 515 (89.10%) 506 (87.54%) 528 (91.35%)
 Yes 248 (10.73%) 63 (10.90%) 63 (10.90%) 72 (12.46%) 50 (8.65%)
CKD 0.091
 No 1862 (80.54%) 468 (80.97%) 464 (80.28%) 482 (83.39%) 448 (77.51%)
 Yes 450 (19.46%) 110 (19.03%) 114 (19.72%) 96 (16.61%) 130 (22.49%)
Stroke 0.001
 No 1985 (85.86%) 506 (87.54%) 486 (84.08%) 475 (82.18%) 518 (89.62%)
 Yes 327 (14.14%) 72 (12.46%) 92 (15.92%) 103 (17.82%) 60 (10.38%)
Pneumonia 0.014
 No 1387 (59.99%) 335 (57.96%) 380 (65.74%) 338 (58.48%) 334 (57.79%)
 Yes 925 (40.01%) 243 (42.04%) 198 (34.26%) 240 (41.52%) 244 (42.21%)

Table 1 Patient demographics and baseline characteristics
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patients in Quartile 4 had the lowest 28-day survival 
probability, and the difference was significant (Fig. 2).

Restricted cubic spline
The RCS analysis was adjusted for the effects of age, 
weight, heart rate, systolic blood pressure, respiratory 
rate, sex, SOFA scores and steroid use. The RCS analy-
sis for 28-day all-cause mortality (Fig. 3) and in-hospital 
mortality (Fig. 4) both indicated a U-shaped association 
between the SHR and mortality risk. The turning point of 
the RCS curve is approximately SHR = 0.85, representing 
the inflection point in the relationship between the SHR 

and mortality risk. According to the Cox proportional 
hazards regression model, the turning point lies in Quar-
tile 1, where the mortality risk is minimized, thus demon-
strating consistency between the two results.

Subgroup analysis
The results presented a subgroup analysis of 28-day all-
cause mortality (Fig. 5). In subgroups defined by age < 65, 
age ≥ 65, male sex, female sex, and type 2 diabetes status, 
Quartile 4 consistently demonstrated a greater risk of 
mortality, regardless of whether covariates were adjusted. 
This finding indicates that, irrespective of baseline levels, 
a higher SHR is associated with an increased 28-day mor-
tality risk in critically ill sepsis patients (HR > 1 in each 
subgroup, P < 0.05).

Boruta Algorithm
Figure 6 shows the feature selection results based on the 
Boruta algorithm. Variables in the green area are identi-
fied as important features, and variables in the red area 
are unimportant features in the Boruta algorithm.

Establishment and validation of the prediction model
Table S2 shows the hyperparameter, tuning scope and 
optimal hyperparameter of the four models. Figure  7 
displays the ROC curves of various models, and model 
performance is represented by AUC values. The AUC of 
coxph was 0.8242, the AUC of dt was 0.7277, the AUC of 
deepsurv was 0.7393, the AUC of rsf was 0.8322, and the 
AUC of xgboost was 0.8068. Figure S2 shows the calibra-
tion curve of each model. The calibration curves of the 
coxph, dt, deepsurv, rsf, and xgboost models agree well 
with the reference line, indicating that they have excel-
lent prediction performance. According to the DCA 
curve (Figure S3), each model showed a large net benefit, 
indicating that the established model has robust clinical 
validity. Figure  8 demonstrates the performance of the 
SHR and continuous laboratory data. The AUC of the 
SHR was 0.7081, which was higher than that of blood 
glucose (AUC = 0.6302) and HbA1c (AUC = 0.5149).

Table 2 28-day all-cause mortality and in-hospital mortality
SHR Quar-

tile 1
Quar-
tile 2

Quar-
tile 3

Quar-
tile 4

P 
value

Mortality, n (%)
 28-day all-cause 
mortality

75 
(13%)

86 
(15%)

107 
(19%)

126 
(22%)

 < 0.001

 In-hospital mortality 67 
(12%)

73 
(13%)

86 
(15%)

111 
(19%)

0.001

SHR: Quartile 1 (0.21–0.915), Quartile 2 (0.915–1.14), Quartile 3 (1.14–1.45), and 
Quartile 4 (1.45–7.41)

Table 3 Cox regression model (28-day all-cause mortality)
SHR Unadjusted HR 

(95% CI)
P value Adjusted HR 

(95% CI)
P 
value

Quartile 1 Reference Reference
Quartile 2 1.16 (0.85–1.58) 0.340 1.14 (0.82–1.59) 0.430
Quartile 3 1.47 (1.09–1.97) 0.011 1.45 (1.08–1.95) 0.015
Quartile 4 1.80 (1.35–2.40)  < 0.001 1.84 (1.38–2.46)  < 0.001
SHR: Quartile 1 (0.21–0.915), Quartile 2 (0.915–1.14), Quartile 3 (1.14–1.45), and 
Quartile 4 (1.45–7.41)

Table 4 Cox regression model (in-hospital mortality)
SHR Unadjusted HR 

(95% CI)
P value Adjusted HR 

(95% CI)
P 
value

Quartile 1 Reference Reference
Quartile 2 1.17 (0.84–1.64) 0.350 1.09 (0.76–1.56) 0.630
Quartile 3 1.52 (1.11–2.11) 0.010 1.29 (1.02–2.01) 0.031
Quartile 4 1.87 (1.37–2.56)  < 0.001 1.84 (1.32–2.58)  < 0.001
SHR: Quartile 1 (0.21–0.915), Quartile 2 (0.915–1.14), Quartile 3 (1.14–1.45), and 
Quartile 4 (1.45–7.41)

Characteristic
(Mean ± SD)

SHR p value2

Overall, N = 23121 Quartile 1, N = 5781 Quartile 2, N = 5781 Quartile 3, N = 5781 Quartile 4, N = 5781

Septic shock 0.003
 No 1940 (83.91%) 496 (85.81%) 498 (86.16%) 489 (84.60%) 457 (79.07%)
 Yes 372 (16.09%) 82 (14.19%) 80 (13.84%) 89 (15.40%) 121 (20.93%)
Steroids (glucocorticoid) 0.029
 No 1958 (84.68%) 502 (86.85%) 503 (87.02%) 476 (82.35%) 477 (82.53%)
 Yes 354 (15.31%) 76 (13.15%) 75 (12.98%) 102 (17.65%) 101 (17.47%)
SHR: Quartile 1 (0.21–0.915), Quartile 2 (0.915–1.14), Quartile 3 (1.14–1.45), and Quartile 4 (1.45–7.41).

SBP systolic blood pressure, WBC white blood cell count, RBC red blood cell count, PLT platelet count, PaCO2 carbon dioxide pressure, PaO2 arterial oxygen pressure, 
SaO2 arterial oxygen saturation, INR prothrombin time international normalized ratio, AST aspartate aminotransferase, SOFA sequential organ failure assessment, 
HbA1c glycosylated hemoglobin, CKD chronic kidney disease, Diabetes I type 1 diabetes, Diabetes II type 2 diabetes, SHR stress hyperglycemia ratio

Table 1 (continued) 
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Fig. 3 RCS analysis of 28-day all-cause mortality. Curves represent estimated adjusted hazard ratios, and shaded ribbons represent 95% confidence in-
tervals. The vertical dotted line represents the lowest point of the curve (SHR = 0.85), which represents the lowest hazard ratio. The horizontal dashed line 
represents a hazard ratio of 1.0. HR hazard ratio, CI confidence interval

 

Fig. 2 28-day KM survival curve. KM curves showing the survival rates at 28 days for each quartile. SHR: Quartile 1 (0.21–0.915), Quartile 2 (0.915–1.14), 
Quartile 3 (1.14–1.45), and Quartile 4 (1.45–7.41)
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Discussion
The results of this study indicate a significant association 
between higher SHR and increased 28-day mortality and 
in-hospital mortality in critically ill patients with sepsis. 

These findings remained consistent across age, sex, and 
subgroup with type 2 diabetes after adjusting for covari-
ates, demonstrating the robustness of the study results. 
To date, this is the first study of the relationship between 

Fig. 5 Subgroup forest plot for 28-day all-cause mortality. Adjusted for age, weight, sex, heart rate, respiratory rate, systolic blood pressure, SOFA scores, 
and use of steroids (glucocorticoids). SHR: Quartile 1 (0.21–0.915), Quartile 2 (0.915–1.14), Quartile 3 (1.14–1.45), and Quartile 4 (1.45–7.41). Diabetes I type 
1 diabetes, Diabetes II type 2 diabetes, HR hazard ratio, CI confidence interval

 

Fig. 4 RCS results for in-hospital mortality. Curves represent estimated adjusted hazard ratios, and shaded ribbons represent 95% confidence intervals. 
The vertical dotted line represents the lowest point of the curve, which represents the lowest hazard ratio. The horizontal dashed line represents a hazard 
ratio of 1.0. HR hazard ratio; CI, confidence interval
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the SHR and adverse outcomes in critically ill patients 
with sepsis.

The Boruta algorithm has become a widely used 
method in feature selection, determining which features 
are most important for predicting the target variable by 
simulating randomness [10]. The feature selection results 
of the Boruta algorithm in this study suggest that SHR 
significantly occupies the green area, exhibiting a high 

Z score in feature selection. This indicates that the SHR 
may play a crucial role in this study, showing a significant 
association with the study objectives.

The Boruta algorithm results indicate that the SHR 
plays an important role in predicting 28-day all-cause 
mortality in patients with sepsis, but we also recognize 
that this does not mean that it is a decisive factor. First, 
the Boruta algorithm is a powerful feature selection 

Fig. 7 ROC curves of the machine learning algorithms. coxph Cox proportional hazards survival learner, dt Rpart Survival Trees Survival Learner, deepsurv 
Survival DeepSurv Learner, rsf Survival Random Forest SRC Learner, xgboost extreme gradient boosting survival learner, T days, AUC area under the curve

 

Fig. 6 Feature selection based on the Boruta algorithm. The horizontal axis is the name of each variable, and the vertical axis is the Z value of each 
variable. The box plot shows the Z value of each variable during model calculation. The green boxes represent important variables, and the red boxes 
represent unimportant variables
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method, but it may also be affected by correlations 
between data features. Therefore, even though the SHR 
is highly important in the model, this does not neces-
sarily mean that it is the most decisive factor. Second, 
we found through Cox regression analysis that a greater 
SHR is associated with an increased risk of 28-day mor-
tality in patients with sepsis, which is consistent with the 
Boruta algorithm suggesting that the SHR is an impor-
tant feature. This finding provides evidence that the SHR 
can be used as a predictor of 28-day all-cause mortality in 
patients with sepsis. Therefore, we believe that the SHR 
can be used as a predictor of 28-day all-cause mortality in 
patients with sepsis.

By incorporating acceptable variables into various 
machine learning algorithms, the results suggest that 
these predictive models all demonstrate good perfor-
mance. It can be reasonably inferred that the stress 
hyperglycemia ratio may be a significant predictive indi-
cator or influencing factor in this study.

Relation to previous research
Previous studies have predominantly focused on vascu-
lar diseases. Regarding cerebrovascular diseases, research 
suggests a significant positive correlation between higher 

SHR quartiles and an increased risk of ischemic stroke 
transformation to hemorrhage in patients [11]. Addition-
ally, the SHR is independently associated with the severity 
of post-acute ischemic stroke brain edema, unfavorable 
functional outcomes, and post-acute ischemic stroke 
mortality [12]. In cardiovascular diseases, the results of 
a multicenter prospective study in China demonstrated a 
correlation between high SHR and increased long-term 
mortality [13]. In patients without preexisting diabetes, 
stress hyperglycemia has been shown to be associated 
with adverse outcomes in stroke [14] and acute myocar-
dial infarction patients [15]. However, stress hyperglyce-
mia does not necessarily represent acute-onset elevated 
blood glucose; it may reflect poor blood glucose control 
in patients’ medical history. Therefore, solely exploring 
the relationship between blood glucose at admission and 
disease status is not rigorous. Investigating the relation-
ship between the SHR and disease by introducing HbA1c 
for the correction of past blood glucose levels is a more 
reasonable approach.

SHR and sepsis
An elevated SHR indicates a hyperglycemic stress 
state regardless of past blood glucose levels. Our study 

Fig. 8 Performance of the SHR and laboratory data. WBC white blood cell count, RBC red blood cell count, INR prothrombin time international normalized 
ratio, AST aspartate aminotransferase, HbA1c glycosylated hemoglobin, SHR stress hyperglycemia ratio, AUC area under the curve
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confirmed this finding by demonstrating a significant 
association between a greater SHR and adverse out-
comes in critically ill patients with sepsis, irrespective 
of whether they had type 2 diabetes. This study empha-
sizes the relationship between the SHR and sepsis, a 
highlight of our research. First, we explored the potential 
mechanisms underlying the increased risk of mortality 
in sepsis patients with high SHRs. Animal experiments 
suggest that a three-hour infusion of glucose leading to 
hyperglycemia significantly impairs immune function 
[16] and activates cytokines while promoting oxidative 
stress in the liver [17]. High glucose levels can stimulate 
monocytes to enhance the synthesis and release of inter-
leukin-6 (IL-6) [18], and elevated serum IL-6 exacerbates 
insulin resistance [19], prompting the liver to release 
glucose and contributing to hyperglycemia [20]. IL-6 is a 
pleiotropic cytokine involved in various pathophysiologi-
cal processes, including inflammation and tissue damage 
[21], and has been shown to correlate with adverse out-
comes in critically ill patients [22]. Additionally, tumor 
necrosis factor-alpha (TNF-α), a major proinflammatory 
factor in the pathogenesis of sepsis, is associated with 
adverse outcomes [23] and can induce insulin resistance 
[24]. Second, high blood glucose itself may have proin-
flammatory effects, as lowering blood glucose to 110 mg/
dL has been demonstrated to have anti-inflammatory 
effects in critically ill patients. Our results also show that 
the risk of adverse events in sepsis patients is minimized 
when the SHR is approximately 0.85, indicating a poten-
tial anti-inflammatory effect of a lower SHR, which plays 
a role in reducing the occurrence of adverse events.

Furthermore, another critical factor leading to 
increased mortality in sepsis patients is the occurrence 
of disseminated intravascular coagulation (DIC). A large, 
multicenter, prospective study in Japan revealed that the 
mortality rate of sepsis patients with DIC was twice that 
of those without DIC [25]. In vitro studies suggest that 
acute elevation of glucose can cause endothelial damage, 
promoting abnormal activation of intravascular coagula-
tion, which may lead to sepsis-associated DIC [26]. This 
could be one of the reasons why a high SHR increases 
the occurrence of adverse events. Elevated blood glu-
cose promotes the aggregation of monocytes and mac-
rophages [27], leading to the production and release of 
biologically active molecules such as cytokines, IL-6, and 
interleukin-8. These factors contribute to inflammation 
and thrombus formation, thereby promoting DIC.

Additionally, patients with sepsis may develop a hyper-
glycemic state through multiple mechanisms. First, 
stress associated with critical illness is characterized by 
activation of the hypothalamic‒pituitary‒adrenal (HPA) 
axis and increased release of glucocorticoids, epineph-
rine, glucagon, and growth hormone [28–31], which can 
lead to the occurrence of stress hyperglycemia. Second, 

the release of multiple cytokines, such as interleukin 6 
(IL-6) and tumor necrosis factor-α (TNF-α), indepen-
dently and synergistically with catecholamines promotes 
hepatic glucose production, whereas interleukin 1 (IL-1) 
and TNF-α also inhibit insulin release, seemingly in a 
concentration-dependent manner [32], jointly promoting 
the occurrence of hyperglycemia. Third, glucose is usu-
ally absorbed across cell membranes via carrier-mediated 
facilitated transport systems [33], and glucocorticoids 
inhibit glucose transporter 4 (GLUT4), thereby impairing 
insulin-mediated glucose uptake in skeletal muscle and 
indirectly promoting the occurrence of hyperglycemia. 
The above mechanisms indicate that the occurrence of 
stress hyperglycemia is promoted in patients with sepsis 
via multiple mechanisms.

The higher SHR and increased risk of all-cause mortal-
ity in patients with sepsis may be attributed to the inflam-
matory response caused by blood glucose fluctuations. 
First, a higher SHR indicates stress hyperglycemia, which 
is the result of the complex interaction of hormones such 
as catecholamines, glucocorticoids, and cytokines [34, 
35]. Stress hyperglycemia may lead to increased mito-
chondrial reactive oxygen species production in endothe-
lial cells, which may cause endothelial dysfunction [36]. 
Second, stress hyperglycemia contributes to the nonen-
zymatic glycation of platelet glycoproteins and may be 
one of the causes of platelet activation, which may lead to 
an increased risk of thrombosis [37]. The above mecha-
nisms may also contribute to the increased risk of death 
in patients with sepsis.

Impact on clinical practice
In a previous study on the association between SHR 
and critically ill patients with acute myocardial infarc-
tion, a higher SHR was only correlated with an increased 
risk of adverse events in nondiabetic patients, and simi-
lar results were not found in diabetic patients [8]. Our 
study revealed that a greater SHR is associated with an 
increased risk of 28-day all-cause mortality and in-hos-
pital mortality in critically ill patients with sepsis, regard-
less of whether they have type 2 diabetes. This suggests 
that the SHR can be used to predict the risk of adverse 
events in a broader range of sepsis patients, providing a 
reliable indicator for clinicians in the diagnosis and treat-
ment of critically ill patients with sepsis.

Limitations of the study
This study has several limitations. First, this was a ret-
rospective study relying on past records, which may be 
subject to information bias. Second, not all potential 
confounding factors could be controlled, limiting causal 
inferences. Third, sample selection may be influenced by 
known or unknown factors, resulting in samples that are 
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not representative in certain aspects, potentially affecting 
the external validity of the study.

Conclusion
In conclusion, irrespective of the presence of type 2 dia-
betes, the SHR exhibited a U-shaped relationship with 
28-day all-cause mortality and in-hospital mortality in 
critically ill patients with sepsis. A higher SHR is signifi-
cantly correlated with an increased risk of adverse events. 
The SHR can be used to predict adverse outcomes in crit-
ically ill patients with sepsis. However, multicenter, pro-
spective studies are still needed to validate these results.
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