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Abstract
Background The triglyceride glucose-body mass index (TyG-BMI) is recognized as a reliable surrogate for evaluating 
insulin resistance and an effective predictor of cardiovascular disease. However, the link between TyG-BMI index and 
adverse outcomes in heart failure (HF) patients remains unclear. This study examines the correlation of the TyG-BMI 
index with long-term adverse outcomes in HF patients with coronary heart disease (CHD).

Methods This single-center, prospective cohort study included 823 HF patients with CHD. The TyG-BMI index 
was calculated as follows: ln [fasting triglyceride (mg/dL) × fasting blood glucose (mg/dL)/2] × BMI. To explore the 
association between the TyG-BMI index and the occurrences of all-cause mortality and HF rehospitalization, we 
utilized multivariate Cox regression models and restricted cubic splines with threshold analysis.

Results Over a follow-up period of 9.4 years, 425 patients died, and 484 were rehospitalized due to HF. Threshold 
analysis revealed a significant reverse “J”-shaped relationship between the TyG-BMI index and all-cause mortality, 
indicating a decreased risk of all-cause mortality with higher TyG-BMI index values below 240.0 (adjusted model: HR 
0.90, 95% CI 0.86–0.93; Log-likelihood ratio p = 0.003). A distinct “U”-shaped nonlinear relationship was observed with 
HF rehospitalization, with the inflection point at 228.56 (adjusted model: below: HR 0.95, 95% CI 0.91–0.98; above: HR 
1.08, 95% CI 1.03–1.13; Log-likelihood ratio p < 0.001).

Conclusions This study reveals a nonlinear association between the TyG-BMI index and both all-cause mortality and 
HF rehospitalization in HF patients with CHD, positioning the TyG-BMI index as a significant prognostic marker in this 
population.
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Introduction
Heart failure (HF) presents a global challenge, adversely 
affecting quality of life, causing life-threatening syn-
dromes, and imposing a substantial healthcare burden 
[1]. Despite earlier prevention efforts and more precise 
therapies, the prevalence of HF continues to rise, paral-
leling the aging of the population [2]. Consequently, it 
becomes imperative to delve deeper into early prognostic 
biomarkers for adverse outcomes in HF patients.

Insulin resistance (IR), characterized by diminished 
sensitivity and response to insulin action [3], significantly 
influences HF. IR precedes cardiac dysfunction in HF 
by tightly controlling glucose and fatty acid metabolism 
through insulin signaling in the heart, thereby accelerat-
ing HF progression [4]. Its close associations with obe-
sity, diabetes, hypertension, and coronary heart disease 
(CHD) further implicate IR in HF development. Concur-
rently, HF patients may exhibit both systemic and cardiac 
IR [5]. This interplay warrants intensive investigation.

In the current absence of validated methods for accu-
rately assessing IR, the triglyceride-glucose (TyG) index 
has emerged as an alternative marker [6]. The TyG index, 
which is based on fasting triglyceride (FTG) and glucose 
levels [6], has been recognized as a more reliable marker 
for evaluating IR compared to the euglycemic-hyperinsu-
linaemic clamp test (The gold-standard for diagnosis of 
IR) [7] and the homeostasis model assessment-estimated 
insulin resistance (HOMA-IR) index [8, 9]. Additionally, 
its convenience and low cost make the TyG index a via-
ble tool for all individuals, regardless of diabetes status, 
as it eliminates the need for insulin quantification [10]. 
Recent studies have indicated that TyG-related param-
eters, including TyG-waist circumference (WC), TyG-
waist-to-height ratio (WtHR), and TyG-body mass index 
(BMI), are particularly valuable in assessing IR [11, 12], 
with the TyG-BMI index being of notable importance 
[13]. TyG-BMI index was found to have similar effects 
with HOMA-IR index for IR assessment in Korean adults 
[13] and Chinese nondiabetic individuals [11]. More-
over, TyG-BMI index was considered to be an effective 
index to predict diabetes in the impaired fasting glucose 
patients than TyG-WC and TyG-WtHR [14]. In addition, 
considering the close association between IR and obesity 
[15], the combination of obesity (as defined by BMI) and 
TyG index can better identify IR than other surrogate 
markers. Because of the impact of obesity and IR on HF, 
this combination can also present new insights into the 
relationship between adverse outcomes and HF.

The prognostic value of the TyG-BMI index in rela-
tion to adverse cardiovascular (CV) outcomes, especially 

all-cause mortality [16, 17],has been corroborated by 
several studies [16–19]. One cross-sectional study found 
that TyG-BMI index was negatively correlated with early-
onset HF in patients with ST-elevation myocardial infarc-
tion who underwent primary percutaneous coronary 
intervention (PCI) [20]. Dou et al. [21] were the first to 
report the negative impact of the TyG-BMI index on 360-
day all-cause mortality in HF patients. However, there 
remains a gap in cohort studies exploring the prognostic 
utility of the TyG-BMI index for long-term adverse out-
comes, including all-cause mortality and HF rehospital-
ization, across all ejection fraction (EF) phenotypes in HF 
patients. Our study aims to evaluate the association of 
the TyG-BMI index with long-term adverse outcomes in 
hospitalized HF patients with CHD.

Methods
Study population
This prospective cohort study included consecutive 
patients with HF recruited from the Department of Car-
diology at the Chinese PLA General Hospital in Beijing, 
China, between October 2010 and September 2014. Eli-
gibility required a diagnosis of HF based on the Euro-
pean Society of Cardiology guidelines [22]. Patients were 
classified into three categories: HF with reduced ejec-
tion fraction (HFrEF), HF with mid-range ejection frac-
tion (HFmrEF), and HF with preserved ejection fraction 
(HFpEF). The exclusion criteria were:  (1)  presence of 
diseases such as moderate or severe valvular heart dis-
ease, severe pulmonary hypertension, arrhythmogenic 
right ventricular dysplasia, congenital heart disease, right 
ventricular infarction, pericardial disease, or specific 
cardiomyopathies; (2)  a life expectancy of less than one 
year; (3)  absence of key variables. After excluding three 
patients due to missing key variables and 31 lost to fol-
low-up, a total of 823 patients were ultimately available 
for long-term analysis, comprising 230 HFrEF, 271 HFm-
rEF, and 322 HFpEF patients. The missed follow-up rate 
was 3.6%. The study’s protocol received approval from 
the ethics committee of the Chinese PLA General Hos-
pital, and all participants provided written informed con-
sent at the initial visit.

TyG-BMI index
FTG and blood glucose (FBG) levels were obtained 
from electronic medical records at admission. 
Blood samples were taken for the measurement 
of triglyceride  (TG) and glucose levels under fast-
ing conditions. The TyG-BMI index was calcu-
lated as follows: BMI = weight (kg)/height (m2); 
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TyGindex = ln
(

fastingtriglyceride(mg/dL)×fastingglucose(mg/dL)
2

)
 

[6]; TyG-BMI index = TyG index×BMI.

Clinical variables
Clinical characteristics, medical therapy at discharge, 
and biochemical parameters were collected from medi-
cal records. Laboratory indices were determined using 
standard institutional laboratory measurements at the 
Chinese PLA General Hospital. All measurements were 
carried out by personnel blinded to the patients’ baseline 
characteristics and clinical outcomes.

Atrial fibrillation (AF), chronic obstructive pulmonary 
disease (COPD), and ischemic stroke during admission 
were identified based on diagnoses in medical records. 
CHD was defined as having ≥ 50% stenosis in at least 
one coronary artery, as determined by coronary arte-
riography. Hypertension was characterized as having 
a systolic blood pressure (SBP) ≥ 140 mmHg, diastolic 
blood pressure (DBP) ≥ 90 mmHg, or being on anti-
hypertensive medication. Diabetes mellitus (DM) was 
diagnosed based on medical records or positive labora-
tory test results, specifically Hemoglobin A1c (HbA1c) 
levels ≥ 6.5%. Chronic kidney disease (CKD) was defined 
as an estimated glomerular filtration rate (eGFR) of < 60 
mL/min/1.73 m2.

Echocardiographic measurements
Two-dimensional color, pulsed-wave, and continuous-
wave Doppler echocardiogram (IE33 echocardiogra-
phy system, Royal Philips Electronics, Amsterdam, The 
Netherlands) was performed in our study. All subjects 
underwent echocardiographic measurements by trained 
and certified sonographers from the Cardiology Depart-
ment of the Chinese PLA General Hospital according to 
the guidelines issued by the American Society of Echo-
cardiography [23]. Left atrium dimension (LAD), left 
ventricular posterior wall thickness (LVPWT), left ven-
tricular end-diastolic dimension (LVEDD), interventricu-
lar septum thickness (IVST), left ventricular end-systolic 
diameter (LVESD), right ventricular diameter (RVD), 
right atrial diameter (RAD), right ventricular free wall 
(RVFW), and inferior vena cava (IVC) were measured 
manually. Left ventricular ejection fraction (LVEF), left 
ventricular end-diastolic volume (LVEDV), left ventricu-
lar end-systolic volume (LVESV), left ventricular fraction 
shortening (LVFS), early (E) mitral inflow peak/atrial (A) 
filling peak ratio (E/A), maximum tricuspid regurgita-
tion velocity (TRV max), maximum aortic valve velocity 
(AVV max), and pulmonary artery pressure (PAP) were 
measured automatically.

We estimated the left ventricular mass using the for-
mula recommended in the guidelines and then normal-
ized to the left ventricular mass index (LVMI) according 

to the body surface area (calculated using the formula of 
Stevenson). The left atrial volume was calculated using 
the estimated ellipsoid method [24], and then normal-
ized to the left atrial volume index (LAVI) via the above 
method. LVEF was measured using the modified Simp-
son’s method in the apical four- and two-chamber views.

Outcomes and follow-up
The primary outcomes were all-cause mortality and HF 
rehospitalization, monitored through biennial telephone 
interviews. All-cause mortality were mortality from all 
causes, including CV causes (refractory HF, arrhythmia, 
acute myocardial infarction, cerebrovascular accident) 
and non-CV death (neoplasia, infection, inflammation, 
renal failure, multiple organ failure, aortic aneurism, 
vascular surgery, immune system diseases, and others). 
These interviews were conducted with participants or 
their proxies to collect information on any hospitaliza-
tions or deaths that occurred during the interval, with 
the latest follow-up deadline being March 2023. Patients 
without recorded events by this date were considered 
right-censored in the analysis.

Statistical analysis
Continuous variables were described as mean ± standard 
deviation (SD) or median with interquartile range (IQR), 
depending on the distribution; categorical variables were 
presented as counts and percentages. We used the Krus-
kal–Wallis and χ2 tests for descriptive analysis.

In survival analysis, we employed univariate Kaplan–
Meier and multivariate Cox regression models to inves-
tigate the relationship between the TyG-BMI index and 
long-term adverse outcomes. We compared Kaplan–
Meier curves using the log-rank test. The TyG-BMI index 
was treated as a categorical variable in the multivariate 
Cox model. This model adjusted for factors including age, 
gender, smoking, SBP, heart rate, DM, hypertension, his-
tory of myocardial infarction, prior PCI/coronary artery 
bypass grafting (CABG), stroke, CKD, anemia, COPD, 
AF,  LVEF, and medications such as statins, beta block-
ers, angiotensin-converting enzyme inhibitors (ACE-I)/
angiotensin II receptor blockers (ARBs), diuretics, spi-
ronolactone, digoxin, and calcium channel blockers. 
Additional adjustments were made for creatinine, total 
cholesterol (TC), low-density lipoprotein cholesterol 
(LDL-C), N-terminal pro-brain natriuretic peptide (NT-
proBNP), and high-sensitivity cardiac troponin T (hs-
TnT). Variables like age, SBP, heart rate, LVEF, creatinine, 
TC, LDL-C, NT-proBNP, and hs-TnT were log-trans-
formed in this model. We assessed the nonlinear rela-
tionship between the TyG-BMI index (as a continuous 
variable) and adverse outcomes using restricted cubic 
splines (RCS). RCS defined a threshold value for a seg-
mented fit of outcomes in the Cox regression model.
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All statistical analyses were performed using R version 
4.1.2 (The R Project for Statistical Computing, Vienna, 
Austria). We considered a two-tailed p-value of less than 
0.05 as statistically significant.

Results
Baseline characteristics
Table 1 displays the baseline characteristics of the 823 HF 
patients with CHD, categorized according to their TyG-
BMI index levels. The median age was 68.0 years, with 
an interquartile range of 56.0–77.0 years. The TyG-BMI 
index varied from 114.0 to 386.68, with an average value 
of 222.5 and a standard deviation of 40.5. Patients with 
higher TyG-BMI index levels were typically younger and 
demonstrated elevated BMI, DBP, glucose, HbA1c, TC, 
TG, and TyG index values. A greater prevalence of male 
patients, current smokers, and DM was noted in this sub-
group. In contrast, these patients had reduced high-den-
sity lipoprotein cholesterol (HDL-C) and NT-proBNP 
levels, along with a lower incidence of COPD. Addition-
ally, notable statistical differences were observed in echo-
cardiographic measurements among the three groups. 
These measurements included LAD, LVPWT, LVEDD, 
IVST, LVESD, LVEDV, LVESV, RVFW, IVC, TRV max, 
and PAP.

Association between the TyG-BMI index and adverse 
outcomes
The median follow-up period was 9.4 years (range 
8.7–10.5 years). During this time, 425 patients experi-
enced all-cause mortality, and 484 patients underwent 
HF rehospitalization. Kaplan–Meier survival analysis, 
depicted in Fig.  1, illustrated the cumulative survival 
probabilities for both all-cause mortality and HF rehos-
pitalization across three groups, categorized by their 
TyG-BMI index levels. The group with a higher TyG-BMI 
index demonstrated a significantly lower rate of all-cause 
mortality compared to those with a lower TyG-BMI index 
(p < 0.001). However, the rates of HF rehospitalization did 
not significantly differ among the groups (p = 0.23; Fig. 1).

When the TyG-BMI index was included as a categori-
cal variable in the multivariable Cox regression model, it 
facilitated the evaluation of its association with adverse 
outcomes. The results indicated potential nonlinear rela-
tionships between the TyG-BMI index and both all-cause 
mortality and HF rehospitalization (Table 2; Fig. 2).

Detection of nonlinear association of the TyG-BMI index 
with adverse outcomes
Cox proportional hazards regression models using RCS 
were employed to investigate the nonlinear association 
between the TyG-BMI index and adverse outcomes. The 
analysis revealed a significant reverse “J”-shaped relation-
ship between the TyG-BMI index and all-cause mortality 

in the fully adjusted model (p for nonlinearity = 0.004; 
Fig. 3a). Additionally, the TyG-BMI index demonstrated 
a significant “U”-shaped nonlinear association with HF 
rehospitalization (p for nonlinearity = 0.002; Fig. 3b).

Two-piecewise Cox proportional hazards regression 
models, with threshold-specific associations identified 
by RCS with three knots, were used. The results indi-
cated a decrease in the risk of all-cause mortality with an 
increase in the TyG-BMI index up to a threshold of 240.0. 
Beyond this threshold, the relationship between the TyG-
BMI index and all-cause mortality was not significant 
(TyG-BMI index < 240.0: per unit increase, HR 0.90, 95% 
CI 0.86–0.93; TyG-BMI index > 240.0: per unit increase, 
HR 1.03, 95% CI 0.97–1.10; Fig. 3a; Table 3). The inflec-
tion point for HF rehospitalization was identified at 
228.56. An increased TyG-BMI index below this inflec-
tion point was associated with a decreased risk of HF 
rehospitalization. In contrast, above the inflection point, 
higher TyG-BMI index levels were positively associated 
with an increased risk of HF rehospitalization (TyG-BMI 
index < 228.56: per unit increase, HR 0.95, 95% CI 0.91–
0.98; TyG-BMI index > 228.56: per unit increase, HR 1.08, 
95% CI 1.03–1.13; Fig. 3b; Table 3).

Subgroup analysis of the relationship between the TyG-
BMI index and adverse outcomes
Our investigation focused on the nonlinear relationship 
between the TyG-BMI index and adverse outcomes in 
non-diabetic patients using the adjusted model. We iden-
tified a reverse “J”-shaped association (nonlinear p < 0.01; 
p for Log-likelihood ratio < 0.001; Figure S1c) and a “U”-
shaped association (nonlinear p = 0.003; p for Log-like-
lihood ratio < 0.001; Figure S1d) independently for the 
TyG-BMI index with all-cause mortality and HF rehos-
pitalization, respectively, in non-diabetic individuals. In 
contrast, among diabetic patients, a linear relationship 
was noted, showing increased TyG-BMI index correlat-
ing with decreased risk of all-cause mortality (nonlinear 
p = 0.452; Figure S1a). Nevertheless, in the diabetic sub-
group, the TyG-BMI index did not demonstrate a sig-
nificant association with HF rehospitalization (nonlinear 
p = 0.318; Figure S1b).

Furthermore, the appendix contains figures represent-
ing the separate relationships of the TyG index, BMI, 
FTG, and FBG with all-cause mortality and HF rehospi-
talization (Additional file, Figure S2, S3, S4, S5).

Discussion
In this study, we observed a significant nonlinear rela-
tionship between the baseline TyG-BMI index and 
adverse outcomes, which include all-cause mortality 
and HF rehospitalization, over an extended period in HF 
patients across all EF phenotypes with CHD. The thresh-
old analysis identified a distinct inflection point in the 
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Baseline characteristics Total
(n = 823)

Low TyG-BMI index
(n = 274)

Medium TyG-BMI 
index
(n = 275)

High TyG-BMI index
(n = 274)

p-
value

Age, median (IQR), years 68.0 (56.0–77.0) 73.0 (65.0–81.0) 68.0 (56.0–76.0) 62.0 (52.0–73.0) < 0.001
Male, n (%) 578 (70.2%) 178 (65.0%) 197 (69.0%) 203 (74.1%) 0.012
Current smokers, n (%) 218 (26.5%) 60 (21.9%) 67 (24.4%) 91 (33.2%) 0.003
Body mass index, mean (SD), kg/m² 24.9 ± 3.6 21.9 ± 2.8 25.1 ± 2.1 27.9 ± 3.1 < 0.001
Systolic blood pressure, median (IQR), mm Hg 131.0 (118.0–147.0) 129.0 (114.0–145.0) 130.0 (120.0–147.0) 134.0 (120.0–150.0) 0.063
Diastolic blood pressure, median (IQR), mm Hg 72.0 (64.0–80.0) 70.0 (61.0–80.0) 72.0 (65.0–80.0) 75.0 (68.0–84.0) < 0.001
Heart rate, median (IQR), bpm 74.0 (66.0–84.0) 73.0 (65.0–84.0) 73.0 (67.0–82.0) 75.0 (68.0–84.0) 0.488
NYHA-FC, n (%) 0.389
I/II 522 (63.4%) 169 (61.7%) 188 (68.4%) 165 (60.2%)
III 212 (25.8%) 72 (26.3%) 64 (23.3%) 76 (27.6%)
IV 89 (10.8%) 37 (13.5%) 24 (8.7%) 28 (10.2%)
Medical history
Diabetes mellitus, n (%) 328 (39.9%) 79 (28.8%) 104 (37.8%) 145 (52.9%) < 0.001
Hypertension, n (%) 556 (67.6%) 181 (66.1%) 183 (66.5%) 192 (70.1%) 0.253
Previous myocardial infarction, n (%) 272 (33.1%) 92 (33.6%) 95 (34.5%) 85 (31.0%) 0.799
Previous PCI/CABG, n (%) 343 (41.7%) 107 (39.1%) 123 (44.7%) 113 (41.2%) 0.346
Stroke, n (%) 109 (13.2%) 46 (16.8%) 31 (11.3%) 32 (11.7%) 0.133
Chronic kidney disease, n (%) 131 (15.9%) 47 (17.2%) 45 (16.4%) 39 (14.2%) 0.727
Anemia, n (%) 63 (7.7%) 26 (9.5%) 20 (7.3%) 17 (6.2%) 0.391
Chronic obstructive pulmonary disease, n (%) 83 (10.1%) 41 (15.0%) 24 (8.7%) 18 (6.6%) 0.005
Atrial fibrillation, n (%) 122 (14.8%) 48 (17.5%) 39 (14.2%) 35 (12.8%) 0.347
Echocardiography
Left ventricular ejection fraction, median (IQR), % 46.0 (40.0–55.0) 46.0 (38.0–56.0) 45.0 (40.0–55.0) 45.0 (41.0–55.0) 0.922
LAD, median (IQR), mm 39.0 (35.0–43.0) 38.0 (34.0–41.0) 39.0 (35.0–42.0) 40.0 (36.0–43.0) < 0.001
LVPWT, median (IQR), mm 10.0 (10.0–11.0) 10.0 (9.0–11.0) 11.0 (10.0–11.0) 11.0 (10.0–11.0) < 0.001
LVEDD, median (IQR), mm 49.0 (45.0–54.0) 48.0 (44.0–53.0) 48.0 (45.0–53.0) 51.0 (46.0–57.0) 0.001
IVST, median (IQR), mm 11.0 (10.0–12.0) 11.0 (10.0–12.0) 11.0 (10.0–12.0) 11.0 (10.0–12.0) 0.011
LVMI, median (IQR), g/m2 108.2 (92.7–130.0) 109.2 (94.4–130.9) 108.0 (91.9–129.3) 107.6 (92.5–129.8) 0.589
LAVI, median (IQR), mL/m2 46.7 (36.2–60.0) 47.1 (37.0–63.1) 46.6 (35.5–60.3) 46.1 (37.1–57.8) 0.510
LVESD, median (IQR), mm 36.0 (32.0–41.0) 36.0 (31.0–41.0) 35.0 (31.0–40.8) 37.0 (32.0–43.0) 0.031
LVEDV, median (IQR), mm 112.0 (90.0–141.0) 108.0 (85.0–139.3) 109.5 (88.8–133.3) 120.0 (97.0–153.0) 0.002
LVESV, median (IQR), mm 58.0 (41.0–82.0) 56.0 (38.0–84.0) 55.0 (41.0–78.3) 61.5 (45.3–85.0) 0.028
LVFS, median (IQR), mm 26.0 (21.0–30.0) 27.0 (20.0–30.0) 26.0 (21.0–30.0) 26.0 (21.0–30.0) 0.941
RVD, median (IQR), mm 35.0 (32.0–38.0) 34.0 (31.0–37.0) 35.0 (32.0–38.0) 35.0 (32.0–38.0) 0.233
RAD, median (IQR), mm 35.0 (32.0–38.0) 34.0 (31.0–38.0) 35.0 (32.0–38.0) 34.0 (32.0–37.0) 0.870
RVFW, median (IQR), mm 6.0 (5.0–6.0) 5.0 (5.0–6.0) 6.0 (5.0–6.0) 6.0 (5.0–6.0) 0.001
IVC, median (IQR), mm 15.0 (14.0–17.0) 15.0 (14.0–17.0) 15.0 (14.0–16.0) 15.0 (14.0–17.0) 0.013
E/A, median (IQR) 0.8 (0.6–1.3) 0.8 (0.6–1.3) 0.8 (0.6–1.3) 0.8 (0.6–1.3) 0.388
TRV max, median (IQR), m/s 2.3 (2.1–2.7) 2.4 (2.1–2.9) 2.3 (2.1–2.6) 2.3 (2.1–2.6) 0.005
AVV max, median (IQR), m/s 1.2 (1.0–1.4) 1.2 (1.0–1.5) 1.2 (1.0–1.4) 1.2 (1.0–1.4) 0.938
PAP, median (IQR), mm Hg 29.0 (23.0–36.0) 30.0 (25.0–39.0) 29.0 (23.0–35.0) 28.0 (21.0–34.0) < 0.001
Medication
Statin, n (%) 749 (91.1%) 247 (90.1%) 252 (91.6%) 250 (91.2%) 0.228
Beta blocker, n (%) 635 (77.3%) 204 (74.5%) 215 (78.2%) 216 (78.8%) 0.141
ACE-I/ARB, n (%) 408 (49.6%) 124 (45.3%) 143 (52.0%) 141 (51.5%) 0.119
Diuretic, n (%) 309 (37.5%) 111 (40.5%) 101 (36.7%) 97 (35.4%) 0.597
Spironolactone, n (%) 349 (42.4%) 127 (46.4%) 107 (38.9%) 115 (42.0%) 0.255
Digoxin, n (%) 130 (15.8%) 52 (19.0%) 36 (13.1%) 42 (15.3%) 0.181
Calcium channel blocker, n (%) 234 (28.5%) 74 (27.0%) 78 (28.4%) 82 (29.9%) 0.604
Laboratory indicators
Creatinine, median (IQR), mg/dL 0.9 (0.8–1.2) 0.9 (0.8–1.2) 0.9 (0.8–1.1) 0.9 (0.8–1.2) 0.801
Glucose, median (IQR), mmol/L 6.4 (5.1–8.6) 6.3 (5.2–8.5) 6.3 (5.2–8.5) 6.4 (5.1–8.8) < 0.001

Table 1 Baseline characteristics of study patients according to status of TyG-BMI index



Page 6 of 12Lyu et al. Cardiovascular Diabetology          (2024) 23:162 

TyG-BMI index’s association with adverse outcomes. 
Notably, the TyG-BMI index exhibited a significant 
reverse “J”-shaped relationship with all-cause mortality 
and a “U”-shaped association with HF rehospitalization. 
Our findings indicate that the TyG-BMI index is an inde-
pendent and notable predictor of adverse outcomes in 
HF patients with CHD.

TyG-BMI index and adverse outcomes in HF patients
Before this study, a single cohort study using the MIMIC-
IV database first confirmed a close correlation between 
the TyG-BMI index and all-cause mortality in HF 
patients [21]. This study observed that higher levels of 

the TyG-BMI index were significantly associated with 
a decreased risk of 360-day all-cause mortality [21]. In 
our research, which included HF patients across all phe-
notypes, we similarly found that an elevated TyG-BMI 
index was linked to a lower risk of all-cause mortality, 
particularly when the TyG-BMI index was below 240.0 in 
the adjusted model over a longer follow-up period. Addi-
tionally, our study identified a “U”-shaped association 
between the TyG-BMI index and HF rehospitalization, 
with an inflection point of 228.56 for HF rehospitaliza-
tion (Table  3). This finding was reported for the first 
time in our study. Furthermore, the nonlinear associa-
tion between the TyG-BMI index and adverse outcomes 

Fig. 1 Kaplan–Meier survival curves for adverse outcomes in all heart failure patients. Kaplan–Meier survival curves for (a) all-cause mortality and (b) HF 
rehospitalizition
 HF, heart failure

 

Baseline characteristics Total
(n = 823)

Low TyG-BMI index
(n = 274)

Medium TyG-BMI 
index
(n = 275)

High TyG-BMI index
(n = 274)

p-
value

HbA1c, median (IQR), % 6.2 (5.8–7.2) 6.0 (5.6–6.6) 6.1 (5.8–7.0) 6.8 (6.0–7.9) < 0.001
HDL-C, median (IQR), mmol/L 1.0 (0.8–1.2) 1.1 (0.9–1.3) 1.0 (0.8–1.2) 0.9 (0.8–1.1) < 0.001
LDL-C, median (IQR), mmol/L 2.2 (1.7–2.9) 2.2 (1.7–2.7) 2.2 (1.8–2.8) 2.3 (1.7–3.1) 0.092
Total cholesterol, median (IQR), mmol/L 3.8 (3.2–4.6) 3.8 (3.2–4.4) 3.7 (3.3–4.5) 3.9 (3.3–4.8) 0.037
Triglycerides, median (IQR), mmol/L 1.3 (0.9–1.8) 0.9 (0.7–1.4) 1.2 (1.0–1.7) 1.7 (1.3–2.4) < 0.001
NT-proBNP, median (IQR), pg/mL 1,063.0 

(354.5–1,896.5)
1,503.5 
(489.3–4,692.3)

1,049.0 
(335.8–2,866.3)

865.0 (268.0–2,463.0) < 0.001

hs-TnT, median (IQR), ng/L 0.03 (0.01–0.11) 0.03 (0.01–0.11) 0.02 (0.01–0.11) 0.03 (0.01–0.16) 0.253
TyG index, mean (SD) 8.9 ± 0.7 8.5 ± 0.6 8.8 ± 0.5 9.3 ± 0.7 < 0.001
TyG-BMI index, mean (SD) 222.5 ± 40.5 180.6 ± 20.5 221.3 ± 8.3 267.1 ± 26.4 < 0.001
TyG-BMI index, triglyceride glucose-body mass index; IQR, Inter-quartile range; NYHA-FC, New York Heart Association functional class; PCI, Percutaneous coronary 
intervention; CABG, Coronary artery bypass grafting; LAD, Left atrium dimension; LVPWT, Left ventricular posterior wall thickness; LVEDD, Left ventricular end-
diastolic dimension; IVST, Interventricular septum thickness; LVMI, Left ventricular mass index; LAVI, Left atrial volume index; LVESD, Left ventricular end systolic 
diameter; LVEDV, Left ventricular end-diastolic volume; LVESV, Left ventricular end-systolic volume; LVFS, Left ventricular fraction shortening; RVD, Right ventricular 
diameter; RAD, Right atrial diameter; RVFW, Right ventricular free wall; IVC, Inferior vena cava; E/A, early (E) mitral inflow peak/atrial (A) filling peak ratio; TRV, 
Tricuspid regurgitation velocity; AVV, Aortic valve velocity; PAP, Pulmonary artery pressure; IQR, Inter-quartile range; ACE-I, Angiotensin-converting enzyme 
inhibitor; ARB, Angiotensin II receptor blocker; HbA1c, Hemoglobin A1c; HDL-C, High-density lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; 
NT-proBNP, N-terminal pro-brain natriuretic peptide, hs-TnT, high-sensitivity cardiac troponin T; TyG, triglyceride-glucose

Table 1 (continued) 
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Table 2 Association between TyG-BMI index and adverse outcomes in heart failure patients
Variables Total incidence Tertiles of TyG-BMI index p for trend

Low TyG-BMI index
(114.04–205.79)

Medium TyG-BMI index
(205.80–235.52)

High TyG-BMI index
(235.78–386.68)

All-cause mortality
Events/ sample size 425/ 823 167/ 274 140/ 275 118/ 274
Incidence per 1,000 PYs (95% 
CI)

233.46 (212.29–256.74) 268.28 (230.53–312.22) 221.63 (187.80–261.57) 208.37 (173.97–249.57)

Crude HR (95% CI) —— 1.43 (1.14–1.78) Ref. 0.76 (0.60–0.98) < 0.001
Model 1a: adjusted HR (95% CI) —— 1.14 (0.91–1.43) Ref 0.91 (0.71–1.17) 0.196
Model 2b: adjusted HR (95% CI) —— 1.00 (0.79–1.26) Ref. 0.93 (0.72–1.20) 0.380
Heart failure 
rehospitalization
Events/ sample size 484/ 823 173/ 274 155/ 275 156/ 274
Incidence per 1,000 PYs (95% 
CI)

316.65 (289.66–346.15) 322.94 (278.23–374.83) 304.77 (260.37–356.73) 322.17 (275.38–376.91)

Crude HR (95% CI) —— 1.20 (0.97–1.49) Ref. 1.06 (0.85–1.32) 0.237
Model 1a: adjusted HR (95% CI) —— 1.16 (0.94–1.45) Ref. 1.10 (1.02–1.37) 0.175
Model 2b: adjusted HR (95% CI) —— 1.12 (0.90–1.40) Ref. 1.14 (0.91–1.43) 0.254
a Model 1 adjusted for age, gender
b Model 2 adjusted for age, gender, smoking, SBP, heart rate, diabetes mellitus, hypertension, previous myocardial infarction, previous PCI/CABG, stroke, chronic 
kidney disease, anemia, COPD, atrial fibrillation, LVEF, statin, beta blocker, ACE-I/ARB, diuretic, spironolactone, digoxin, calcium channel blocker, creatinine, TC, LDL-
C, NT-proBNP, hs-TnT

PY, person-year; HR, hazard ratio; CI, confidence interval; TyG-BMI index, triglyceride glucose-body mass index; SBP, systolic blood pressure; PCI, percutaneous 
coronary intervention; CABG, coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; LVEF, left ventricular ejection fraction; ACE-I, 
angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; NT-proBNP, 
N-terminal pro-brain natriuretic peptide, hs-TnT, high-sensitivity cardiac troponin T

Fig. 2 Association between TyG-BMI index and adverse outcomes using a restricted cubic spline (RCS) regression model and histogram. (a) all-cause 
mortality and (b) HF rehospitalizition. The model was adjusted for age, gender, smoking, SBP, heart rate, diabetes mellitus, hypertension, previous myocar-
dial infarction, previous PCI/CABG, stroke, chronic kidney disease, anemia, COPD, atrial fibrillation, LVEF, statin, beta blocker, ACE-I/ARB, diuretic, spirono-
lactone, digoxin, calcium channel blocker, creatinine, TC, LDL-C, NT-proBNP, hs-TnT. HR, hazard ratio; CI, confidence interval; TyG-BMI index, triglyceride 
glucose-body mass index; SBP, systolic blood pressure; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; COPD, chronic 
obstructive pulmonary disease; LVEF, left ventricular ejection fraction; ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor block-
er; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; NT-proBNP, N-terminal pro-brain natriuretic peptide, hs-TnT, high-sensitivity cardiac 
troponin T
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persisted in the non-diabetic subgroup, where the TyG-
BMI index showed a “U”-shaped association with HF 
rehospitalization and a reverse “J”-shaped relationship 
with all-cause mortality. Conversely, in diabetic patients, 
a transition to a linear association between the TyG-BMI 
index and all-cause mortality was observed, suggesting 
that an increase in the TyG-BMI index was associated 
with a decreased risk of all-cause mortality. This finding 
aligns with previous research [21]. However, the associa-
tion with HF rehospitalization in the diabetic subgroup 
was not significant (Figure S1). To date, no other studies 
have reported on the relationship between the TyG-BMI 
index and HF rehospitalization in diabetic HF patients. 
Further research is required to elucidate these findings.

Increased levels of TyG-BMI index and its potential 
mechanisms for HF rehospitalization risk
IR is closely associated with HF, independent of diabetes 
and other relevant metabolic diseases, for several reasons 
[25, 26]. Firstly, hyperinsulinemia leads to sodium reten-
tion [27], which increases myocardial mass and causes 
subclinical myocardial dysfunction, ultimately reducing 
cardiac output [28]. Secondly, hyperinsulinemia con-
tributes to sympathetic nervous system activation [29], 
impairing cardiac innervations and exacerbating cardiac 
function decline in HF [30]. Additionally, IR is linked to 
an enhanced pressor effect of angiotensin II, promoting 
cardiomyocyte hypertrophy and collagen production 
[31, 32], leading to abnormal cardiac remodeling and 

dysfunction [33]. Conversely, HF may induce a state of IR 
[34] and hasten IR progression. Reduced arterial filling 
due to HF triggers norepinephrine release [35], impair-
ing insulin sensitivity and glucose tolerance [36], thereby 
leading to subsequent IR. Moreover, HF alters glucose 
uptake in cardiac cells, favoring free fatty acid use, which 
results in metabolic dysfunction and subsequent IR [37, 
38]. The biological mechanisms underlying rehospitaliza-
tion in HF patients associated with an elevated TyG-BMI 
index, as a reliable surrogate for IR, can be elucidated by 
this interrelated cycle.

Lower levels of TyG-BMI index and its potential 
mechanisms for adverse outcomes
The observed inverse relationship between the TyG-BMI 
index and all-cause mortality in HF patients was presum-
ably effected simultaneously by BMI and IR. IR is closely 
associated with obesity [39, 40]. More than 70% of obese 
population are IR [41], and overweight or obese individu-
als may better endure the impact of IR than low/normal 
weight individuals [42]. Obesity, a key component and 
common partner of IR, is protective in patients with 
established HF. Such phenomenon, known as “obesity 
paradox” (OP) [43], accounts for the negative relationship 
of TyG-BMI index with all-cause death in HF patients. 
This trend has been consistently reported across various 
cohort studies [44–48]. The OP may be explained by sev-
eral mechanisms. First, chronic HF is often accompanied 
by a chronic catabolic state, leading to the loss of both fat 

Fig. 3 The nonlinear association of TyG-BMI index with adverse outcomes in the fully adjusted model. The nonlinear association of TyG-BMI index (as 
a continuous variable) with (a) all-cause mortality and (b) HF rehospitalizition. Spline curves were adjusted for age, gender, smoking, SBP, heart rate, 
diabetes mellitus, hypertension, previous myocardial infarction, previous PCI/CABG, stroke, chronic kidney disease, anemia, COPD, atrial fibrillation, LVEF, 
statin, beta blocker, ACE-I/ARB, diuretic, spironolactone, digoxin, calcium channel blocker, creatinine, TC, LDL-C, NT-proBNP, hs-TnT. HR, hazard ratio; CI, 
confidence interval; TyG-BMI index, triglyceride glucose-body mass index; HF, heart failure; SBP, systolic blood pressure; PCI, percutaneous coronary inter-
vention; CABG, coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; LVEF, left ventricular ejection fraction; ACE-I, angiotensin-
converting enzyme inhibitor; ARB, angiotensin II receptor blocker; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; NT-proBNP, N-terminal 
pro-brain natriuretic peptide, hs-TnT, high-sensitivity cardiac troponin T
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and lean mass, which in turn results in a poorer progno-
sis [49]. A higher BMI might indicate better protection 
and sufficient physiological reserves to combat malnutri-
tion-related inflammation [49]. Second, HF is linked to an 
anabolic overdrive that offers protection against potential 
adverse outcomes [26]. Additionally, anti-inflammatory 
adipose tissue produces soluble tumor necrosis factor-α 
receptors, mitigating the harmful proapoptotic effects of 
tumor necrosis factor-α on the myocardium, thus provid-
ing a cardioprotective effect [50]. Obesity is also associ-
ated with elevated levels of lipoproteins, which bind and 
neutralize lipopolysaccharides, agents responsible for 
the release of inflammatory cytokines [50]. Furthermore, 
lower NT-proBNP levels are observed in obese patients, 
indicative of a more favorable hemodynamic status char-
acterized by increased blood volume and higher BP. This 
could potentially allow these patients to tolerate higher 
doses of cardioprotective medications [51]. Our study 

demonstrated a similar trend in NT-proBNP levels across 
different TyG-BMI index categories (Table 1).

IR itself may also benefit HF patients in all-cause death. 
Obese individuals with the lowest HOMA-IR values have 
the highest risk of CV mortality [52]. Considering the 
potential benefits of IR in obese people, the absence of IR 
in these individuals may deactivate the necessary internal 
self-defense mechanisms against obesity [52]. Moreover, 
the reduction of IR may result in potential organ damage 
[53], and the lack of IR defense mechanisms has possibly 
been implicated in an increased CV death risk [54]. Like 
various longevity-promoting interventions, impaired 
insulin/insulin-like growth factor-1 signaling can serve 
as molecular signals to exert downstream effects to ulti-
mately induce endogenous defense mechanisms like 
elevated antioxidant defense capacities culminating in 
increased stress resistance and longevity [55]. Therefore, 
while IR is associated with harmful effects, it is also an 
evolutionary protective mechanism against some danger-
ous threat to life homeostasis [53]. This protective mech-
anism of IR may explain the too low TyG-BMI index 
levels were associated with the lowest survival rates and 
an increased risk of HF rehospitalization.

Better predictive performance of TyG-BMI index compared 
to separate indicators
Previous research indicated that low FTG levels was a 
predictive biomarker for cardiac mortality in HF patients 
[56], and extremely low levels of TG are associated with 
adverse health outcomes [57]. Figure S4 represented a 
negative correlation between FTG and all-cause mortal-
ity and HF rehospitalization in the adjusted model. Simi-
larly, hypoglycemia may trigger adverse CV events [58]. 
In this study, significant linear association was found 
between FBG and rehospitalization of HF, while no asso-
ciation was observed between FBG and all-cause death 
(Additional file, Figure S5). Using FBG or FTG levels 
alone to predict adverse outcomes may not be sensitive 
and comprehensive enough. The TyG index, a combina-
tion of these two indicators, still has limited predictive 
performance in our study. Some cohort studies have 
shown a nonlinear relationship between the TyG index 
and the risk of HF rehospitalization [59, 60]. Our study 
observed a similar trend (Additional file, Figure S3b). 
Prior research has indicated that a higher TyG index 
independently increases the risk of all-cause mortality in 
HF patients [59, 61, 62]. However, in this study, no sig-
nificant association was found between the TyG index 
and all-cause mortality (Additional file, Figure S3a). Ear-
lier studies have suggested that a lower BMI is not asso-
ciated with rehospitalization in HF patients [63], while 
an increasing BMI is significantly linked to a higher risk 
of HF hospitalization, despite a reduced mortality risk 
associated with higher BMI levels [64, 65]. The “obesity 

Table 3 Threshold effect analysis of TyG-BMI index on all-cause 
mortality and heart failure rehospitalization

Crude HR 
(95% CI)

Adjusted 
HRa (95% 
CI)

All-cause mortality
Total 0.93 

(0.90–0.96)
0.94 
(0.91–0.97)

Fitting by two-piecewise Cox regression 
model
Inflection point 252.44 240.00
TyG-BMI index < inflection point (per unit) 0.89 

(0.86–0.92)
0.90 
(0.86–0.93)

TyG-BMI index > inflection point (per unit) 1.05 
(0.99–1.12)

1.03 
(0.97–1.10)

p for Log-likelihood ratio < 0.001 0.003
Heart failure rehospitalization
Total 0.99 

(0.97–1.02)
1.01 
(0.98–1.03)

Fitting by two-piecewise Cox regression 
model
Inflection point 244.56 228.56
TyG-BMI index < inflection point (per unit) 0.96 

(0.93–0.99)
0.95 
(0.91–0.98)

TyG-BMI index > inflection point (per unit) 1.17 
(1.09–1.25)

1.08 
(1.03–1.13)

p for Log-likelihood ratio < 0.001 < 0.001
a Adjusted for age, gender, smoking, SBP, heart rate, diabetes mellitus, 
hypertension, previous myocardial infarction, previous PCI/CABG, stroke, 
chronic kidney disease, anemia, COPD, atrial fibrillation, LVEF, statin, beta 
blocker, ACE-I/ARB, diuretic, spironolactone, digoxin, calcium channel blocker, 
creatinine, TC, LDL-C, NT-proBNP, hs-TnT

HR, hazard ratio; CI, confidence interval; TyG-BMI index, triglyceride glucose-
body mass index; SBP, systolic blood pressure; PCI, percutaneous coronary 
intervention; CABG, coronary artery bypass grafting; COPD, chronic obstructive 
pulmonary disease; LVEF, left ventricular ejection fraction; ACE-I, angiotensin-
converting enzyme inhibitor; ARB, angiotensin II receptor blocker; TC, total 
cholesterol; LDL-C, low-density lipoprotein cholesterol; NT-proBNP, N-terminal 
pro-brain natriuretic peptide, hs-TnT, high-sensitivity cardiac troponin T
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paradox” does not seem to influence the risk of HF rehos-
pitalization among HF patients. Our study also found 
a similar pattern in the relationship between BMI and 
adverse outcomes (Additional file, Figure S2). Overall, 
considering the trends of FTG, FBG, and BMI, the pre-
dictive value of TyG-BMI index on adverse outcomes risk 
has been influenced by the combined effect of all three 
factors. TyG-BMI index may be proved to better reveal 
their interactions and synergistic effects and thus more 
accurately predict adverse outcomes risk of HF patients 
in our study, demonstrating significant reverse “J”-shaped 
relationship with all-cause mortality and a “U”-shaped 
association with HF rehospitalization.

Our research demonstrated a substantial nonlinear 
relationship between the TyG-BMI index and long-term 
adverse outcomes in patients with HF, offering valuable 
insights for risk stratification, prognosis assessment, and 
therapeutic guidance in this population. The findings sug-
gest that the TyG-BMI index is an independent predic-
tor of adverse outcomes in HF. Integrating the TyG-BMI 
index with established risk factors could enhance the pre-
cision of risk stratification in HF patients. Furthermore, 
the TyG-BMI index, as a predictive biomarker for adverse 
outcomes, can contribute to the effective management of 
HF patients, allowing for more targeted medication strat-
egies based on different TyG-BMI categories.

Study strengths and limitations
A key contribution of our study is the novel identifica-
tion of nonlinear associations between the TyG-BMI 
index and long-term adverse outcomes in HF patients 
across all EF phenotypes associated with CHD. Notably, 
our study is the first to report a “U”-shaped correlation 
between the TyG-BMI index and rehospitalization in HF 
patients. However, our study has limitations. Firstly, aside 
from the TyG-BMI index, TyG-WC and TyG-WtHR are 
other commonly used metrics for assessing IR. Due to 
the lack of relevant data in our database, we were unable 
to compare the TyG-BMI index with these metrics. 
Secondly, although we adjusted for various confound-
ing factors, there were other confounding factors, such 
as demographic characters (educational and socioeco-
nomic status), lifestyle variables (frequency of exercise, 
work and life pressure, and mental health), nutritional 
levels (quantity or type of adiposity, and dietary hab-
its), or comorbidities that might impact the observed 
outcomes. Thirdly, our study relied on a single baseline 
blood sample to gather information on TyG-BMI index, 
which may alter over follow-up owing to the participants’ 
lifestyles and medications. Therefore, we could not assess 
the impact on all-cause mortality and HF rehospitaliza-
tion over time. Fourthly, nearly 40% of the patients were 
under antidiabetic treatment and a few subjects took 
fibrates, which inevitably affected levels of FTG or FBG 

included in TyG-BMI index calculation and the stability 
of our results. Moreover, this single-center study, con-
ducted in China, includes a moderate sample size of HF 
patients with CHD. This could introduce potential selec-
tion bias, and the findings might not be universally appli-
cable to other HF populations.

Conclusion
This study reveals a significant nonlinear association 
between the TyG-BMI index and both all-cause mortal-
ity and HF rehospitalization among HF patients across 
various EF phenotypes with CHD during long-term fol-
low-up. The TyG-BMI index proves to be a valuable bio-
marker for predicting the risk of adverse outcomes in HF 
patients, and its assessment could refine prognosis evalu-
ation for these patients.
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