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Hepatic insulin resistance and muscle 
insulin resistance are characterized by distinct 
postprandial plasma metabolite profiles: 
a cross-sectional study
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Abstract 

Background Tissue-specific insulin resistance (IR) predominantly in muscle (muscle IR) or liver (liver IR) has previously 
been linked to distinct fasting metabolite profiles, but postprandial metabolite profiles have not been investigated 
in tissue-specific IR yet. Given the importance of postprandial metabolic impairments in the pathophysiology of car-
diometabolic diseases, we compared postprandial plasma metabolite profiles in response to a high-fat mixed meal 
between individuals with predominant muscle IR or liver IR.

Methods This cross-sectional study included data from 214 women and men with BMI 25–40 kg/m2, aged 
40–75 years, and with predominant muscle IR or liver IR. Tissue-specific IR was assessed using the muscle insulin 
sensitivity index (MISI) and hepatic insulin resistance index (HIRI), which were calculated from the glucose and insulin 
responses during a 7-point oral glucose tolerance test. Plasma samples were collected before (T = 0) and after (T = 30, 
60, 120, 240 min) consumption of a high-fat mixed meal and 247 metabolite measures, including lipoproteins, 
cholesterol, triacylglycerol (TAG), ketone bodies, and amino acids, were quantified using nuclear magnetic resonance 
spectroscopy. Differences in postprandial plasma metabolite iAUCs between muscle and liver IR were tested using 
ANCOVA with adjustment for age, sex, center, BMI, and waist-to-hip ratio. P-values were adjusted for a false discovery 
rate (FDR) of 0.05 using the Benjamini–Hochberg method.

Results Sixty-eight postprandial metabolite iAUCs were significantly different between liver and muscle IR. Liver IR 
was characterized by greater plasma iAUCs of large VLDL (p = 0.004), very large VLDL (p = 0.002), and medium-sized 
LDL particles (p = 0.026), and by greater iAUCs of TAG in small VLDL (p = 0.025), large VLDL (p = 0.003), very large VLDL 
(p = 0.002), all LDL subclasses (all p < 0.05), and small HDL particles (p = 0.011), compared to muscle IR. In liver IR, 
the postprandial plasma fatty acid (FA) profile consisted of a higher percentage of saturated FA (p = 0.013), and a lower 
percentage of polyunsaturated FA (p = 0.008), compared to muscle IR.

Conclusion People with muscle IR or liver IR have distinct postprandial plasma metabolite profiles, with more unfa-
vorable postprandial metabolite responses in those with liver IR compared to muscle IR.
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Introduction
Overweight, obesity and related metabolic complica-
tions and chronic diseases, such as cardiovascular dis-
ease (CVD) and type 2 diabetes (T2DM), pose a massive 
burden to public health [1]. Insulin resistance (IR) is one 
of the earliest metabolic disturbances that underlies the 
development of many obesity-related metabolic compli-
cations [2]. Apart from its central role in glucose home-
ostasis, insulin is a major regulator of lipid and protein 
metabolism. As such, IR is commonly accompanied by 
lipid and lipoprotein abnormalities, although the causal 
and temporal relationships of these links are unclear [3].

The pathophysiology of whole-body IR is characterized 
by great heterogeneity, with inter-individual differences 
in IR severity in the various metabolic organs, includ-
ing the liver and skeletal muscle. Tissue-specific IR in 
liver and skeletal muscle has previously been linked to 
distinct plasma metabolite and lipidome profiles [4, 5]. 
These findings may indicate that either the mechanisms 
causing tissue-specific IR differ between the affected tis-
sues or that tissue-specific IR results in different meta-
bolic disturbances. More specifically, muscle IR has been 
associated with lower fasting plasma concentrations of 
lysophosphatidylcholines, while liver IR has been associ-
ated with higher fasting plasma levels of triacylglycerols 
(TAG) and ketogenic amino acids, lower levels of ketone 
bodies, and higher diacylglycerols (DAG), the latter in 
women, but not in men [4, 5].

Furthermore, liver IR has been characterized by ele-
vated postprandial total TAG in response to an oral fat 
load, compared to muscle IR and insulin-sensitive indi-
viduals [6]. Changes in postprandial metabolite levels 
reflect the complex interplay of the production, secre-
tion, and clearance by the various metabolic organs, in 
particular the liver, adipose tissue, and skeletal muscle. 
Therefore, postprandial metabolite concentrations may 
provide more insights into the metabolism and function-
ing of these key metabolic organs than fasting metabo-
lite levels. Importantly, early metabolic perturbations are 
more likely to become apparent in the postprandial state, 
when complex processes in these tissues act to maintain 
or regain homeostasis. Accordingly, postprandial metab-
olites, including TAGs, in the circulation are important 
predictors of risk for future CVD and related metabolic 
diseases, independent of fasting measures [7–9].

To gain a better understanding of fasting and post-
prandial metabolism in tissue-specific IR, we compared 
fasting and postprandial plasma  metabolite profiles, 

including lipoproteins, apolipoproteins, cholesterol, tri-
glycerides, ketone bodies, and amino acids, in response 
to a high-fat mixed meal in individuals with predominant 
muscle IR or liver IR.

Methods
Study design and participants
This study is a cross-sectional analysis using baseline data 
from the PERSonalized Glucose Optimization Through 
Nutritional Intervention (PERSON) study, a two-center, 
randomized, dietary intervention trial that was conducted 
from May 2018 until November 2021 at Maastricht Uni-
versity Medical Center + (MUMC+) and Wageningen 
University (WUR) in the Netherlands. The design and 
methodology have been described in detail previously 
[10]. The trial was performed in line with the principles 
of the Declaration of Helsinki, approved by the Medical 
Ethical Committee of the MUMC + (NL63768.068.17), 
and registered at ClinicalTrials.gov (NCT03708419). All 
participants gave written informed consent.

Participants were recruited via a volunteer database, 
flyers, and local newspaper and online media advertise-
ments. Inclusion criteria were: age 40–75  years, BMI 
25–40  kg/m2, body weight stability for at least three 
months (no weight gain or loss > 3  kg), and tissue-spe-
cific IR, characterized as predominant muscle or liver 
IR. Exclusion criteria included pre-diagnosis of T2DM, 
diseases or medication use that affect glucose or lipid 
metabolism (e.g. pheochromocytoma, Cushing’s syn-
drome, acromegaly, or chronic use of fibrates, thiazoli-
dinediones, or NSAIDs), major gastrointestinal disorders, 
history of major abdominal surgery, uncontrolled hyper-
tension, smoking, alcohol consumption > 14 units/wk, 
and > 4  h/wk moderate-to-vigorous physical activity 
(metabolic equivalents [METs] > 3.0). Using statins was 
not an exclusion criterion in the original trial because 
we did not expect interference with the primary study 
outcomes. However, statin users were excluded from 
the current analysis due to statins’ effects on fasting and 
postprandial cholesterol and triglycerides [11, 12]. Data 
on demographics, medical history, family history of dia-
betes (≥ 1 first-degree relative with diabetes), and medi-
cation use and lifestyle were collected by questionnaire.

Tissue‑specific insulin resistance
Details on the assessment of eligibility have been 
described previously [13]. Tissue-specific IR was assessed 
at screening and baseline using the plasma glucose and 
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insulin concentrations during a 7-point oral glucose tol-
erance test (OGTT). After an overnight fast, participants 
ingested 200 mL of a 75 g glucose drink (Novolab) within 
5 min. Blood samples were collected from the antecubi-
tal vein via intravenous cannula before (T = 0  min) and 
after ingestion of the glucose drink (T = 15, 30, 45, 60, 90, 
and 120 min). Plasma glucose and insulin concentrations 
were quantified by enzymatic assay or enzyme-linked 
immunoassay (ELISA), respectively, and used for calcu-
lation of the muscle insulin sensitivity index (MISI) and 
hepatic insulin resistance index (HIRI) [14, 15]. MISI was 
calculated as: (dGlucose/dt ÷ [mean insulin in pmol/L]), 
where dGlucose/dt is the rate of decay of plasma glucose 
concentration (mmol/L) during the OGTT, calculated as 
the slope of the least square fit to the decline in plasma 
glucose concentration from peak to nadir [14, 15]. HIRI 
was calculated as: ([glucoseAUC 0–30 in mmol/L*h] × [insu-
linAUC 0–30 in pmol/L*h]). Tertile cut-offs for MISI and 
HIRI from a previous study with a similar study popu-
lation [16] were used to identify individuals with pre-
dominant muscle IR or liver IR: individuals in the lowest 
tertile of MISI and lowest or middle tertile of HIRI were 
classified as predominant muscle IR, while individuals in 
the highest tertile of HIRI and middle or highest tertile 
of MISI were classified as predominant liver IR. Base-
line measurements were performed within three months 
after screening. In this analysis, MISI and HIRI from the 
screening and baseline measurements were averaged.

The Matsuda index, a measure of whole-body insu-
lin sensitivity, was calculated using glucose and insu-
lin values from time points 0, 30, 60, 90, and 120  min: 
(10,000 ÷ square root of [fasting plasma glucose in 
mmol/L × fasting insulin in mU/L] × [mean glucose in 
mmol/L x mean insulin in mU/L]) [17]. Glucose status 
was defined according to WHO criteria [18]: normal 
glucose tolerance (NGT), fasting glucose < 6.1  mmol/L 
and 2-h glucose < 7.8  mmol/L; impaired fasting glu-
cose (IFG), fasting glucose 6.1 – 6.9  mmol/L and 2-h 
glucose < 7.8  mmol/L; impaired glucose tolerance 
(IGT), fasting glucose < 6.1  mmol/L and 2-h glucose 

7.8–11.0  mmol/L; combined IFG/IGT, fasting glucose 
6.1–6.9  mmol/L and 2-h glucose 7.8–11.0  mmol/L; 
T2DM, fasting glucose ≥ 7.0  mmol/L and/or 2-h 
glucose ≥ 11.1 mmol/L.

High‑fat mixed‑meal test
After a 12-h overnight fast, participants visited the facili-
ties for a high-fat mixed-meal test. The evening before 
the visit, participants consumed a standardized low-fat 
pasta meal (30% of energy intake [en%] fat, 49 en% carbo-
hydrates [CHO], 21 en% protein; 1560–2460 kJ, depend-
ing on estimated energy requirements), and they were 
instructed to refrain from alcohol and vigorous physical 
activities for three days before the visit. The liquid high-
fat mixed meal was prepared in the metabolic kitchen 
using ice cream, full-fat milk, whipped cream, and sugar. 
It contained 49 g fat (33 g saturated fat [SFA]), 48 g CHO, 
and 12 g protein (Table 1).

An intravenous cannula was inserted in the antecubi-
tal vein, and a fasting blood sample was drawn at least 
30  min after insertion. Participants consumed the meal 
within 5 min. Postprandial blood samples were drawn at 
T = 30, 60, 90, 120, 180, and 240 min.

Glucose and insulin levels were measured in EDTA 
plasma from timepoints 0, 30, 60, 120, 180, and 240 min 
by enzymatic assay or ELISA, respectively. Fasting plasma 
non-esterified fatty acids (NEFA) and fasting serum TAG, 
total cholesterol, and high-density lipoprotein (HDL) 
cholesterol were quantified with enzymatic assays. 
Hypertriglyceridemia was defined as fasting serum 
triglyceride ≥ 1.7  mmol/L. The inflammatory marker 
C-reactive protein (CRP) was measured in fasting plasma 
with a Luminex immunoassay.

The homeostasis model assessment of insulin resist-
ance (HOMA-IR) was calculated as (fasting glucose in 
mmol/L × fasting insulin in mU/L) ÷ 22.5, and HOMA of 
β-cell function (HOMA-β) was calculated as (20 × fasting 
insulin in mU/L) ÷ (fasting glucose in mmol/L – 3.5) [19]. 
Adipose tissue IR (Adipo-IR) was estimated by calculat-
ing (fasting insulin in pmol/L x fasting NEFA in mmol/L).

Table 1 Ingredients and nutrient composition of the high-fat mixed meal

Ice cream Full‑fat milk Whipped cream Sugar Total per meal

Amount per meal, g 150 125 70 5 350

Energy, kJ 1388 348 973 85 2793

Protein, g 5.6 4.5 1.5 0 11.6

Fat, g 19.5 4.5 24.6 0 48.6

 Saturated fat, g 12.8 3.1 17.5 0 33.4

Carbohydrates, g 34.5 5.9 2.2 5.0 47.5

 Sugar, g 31.5 5.9 2.2 5.0 44.5
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Fasting and postprandial metabolite profile
Metabolite concentrations were quantified in plasma 
samples from T = 0, 30, 60, 120, and 240  min by the 
Nightingale high-throughput nuclear magnetic reso-
nance (NMR) metabolomics platform (Nightingale 
Health Ltd., Helsinki, Finland) [20]. This platform pro-
vides quantitative data on 164 metabolites, including 14 
lipoprotein subclasses, their lipid concentrations and 
composition, apolipoprotein A-I (ApoA) and B (ApoB), 
major fatty acids, (branched-chain) amino acids (BCAA), 
glycolysis-related measures, and ketone bodies. In addi-
tion, it provides data on three lipoprotein sizes (very-
low-density lipoprotein [VLDL], low-density lipoprotein 
[LDL], and HDL diameter) and 82 relative measures 
(i.e. percentages, ratios). We used clinically measured 
plasma glucose rather than NMR-measured glucose and 
excluded the measure ‘Unsaturation’, assessing a total of 
247 metabolic measures.

The postprandial net incremental area under the curves 
(iAUC) were calculated using the trapezoid method. For 
the calculation of iAUCs, metabolite curves from par-
ticipants were excluded if values of ≥ 2 time points were 
missing (n = 2) and/or if the last (T = 240 min) value was 
missing (n = 5). For metabolite curves with one missing 
value at 30–120  min, the missing values were imputed 
with the weighted metabolite average of the two closest 
time points of that particular metabolite of that partici-
pant (n = 13).

Anthropometrics, body composition and ectopic fat
Waist and hip circumference were measured in dupli-
cate using a non-flexible measuring tape. Whole-body 
and regional fat mass (i.e. android and gynoid fat mass) 
were assessed using dual-energy X-ray absorptiometry 
(DXA) (WUR, Lunar Prodigy, GE Healthcare; MUMC+, 
Discovery A, Hologic). Intrahepatic lipid content was 
quantified after a ≥ 2-h fast with a 3T magnetic resonance 
imaging (MRI) scanner using proton magnetic reso-
nance spectroscopy (1H-MRS) (WUR) or a 6-min whole-
body MRI scan protocol and automated image analysis 
(MUMC +) (AMRA Medical AB, Linköping, Sweden). 
Visceral adipose tissue (VAT) volume was also quantified 
in MUMC + participants from the MRI. Details of these 
methods have been described previously [10].

Habitual dietary intake and physical activity
Habitual dietary intake was assessed with a validated 
163-item semi-quantitative food frequency questionnaire 
(FFQ) [21]. Diet quality was assessed with the Dutch 
Healthy Diet index 2015 (DHD15-index) [22], which 
is a score between 0 (no adherence) and 150 (complete 

adherence) that reflects adherence to the Dutch dietary 
guidelines. Self-reported habitual physical activity was 
assessed with the Baecke questionnaire [23].

Statistical analyses
Baseline characteristics were compared between IR phe-
notypes and between men and women using an inde-
pendent t-test for normally distributed numerical data, 
a Mann–Whitney test for non-normally distributed 
numerical data, and using Fisher’s exact test for categori-
cal data.

Differences in fasting plasma metabolite levels and 
postprandial metabolite iAUCs between muscle IR and 
liver IR were tested using ANCOVA with adjustment for 
age, sex, study center, BMI, and waist-to-hip ratio. Asso-
ciations between MISI/HIRI and fasting plasma metab-
olites and postprandial metabolite iAUCs were tested 
using linear regression analyses with adjustment for age, 
sex, study center, BMI, waist-to-hip ratio, and HIRI/MISI. 
Since sex-specific associations between tissue-specific IR 
and fasting plasma metabolites have been reported pre-
viously [4, 5], we tested for effect modification by sex by 
testing interactions between IR phenotype or MISI/HIRI 
and sex. For the linear regression analyses and ANCOVA, 
fasting metabolites, metabolite iAUCs, MISI and HIRI 
were log-transformed (log2) and autoscaled to allow for 
direct comparison of effect sizes. P-values were adjusted 
for a false discovery rate (FDR) of 0.05 using the Benja-
mini Hochberg method [26].

In addition, because the iAUC may not fully capture 
postprandial metabolite dynamics as iAUCs may be 
similar for postprandial curves with a different shape, we 
performed multivariate analysis to compare the shapes 
of the metabolite responses between IR phenotypes via 
RM-ASCA +  [24, 25]. Details can be found in Additional 
file 1.

Results
Data on plasma metabolomics were available from 230 
participants: 142 individuals with muscle IR and 88 with 
liver IR. Sixteen participants were excluded from analy-
ses due to statin use (muscle IR, 7.7%, n = 11; liver IR, 
5.7%, n = 5), resulting in 131 individuals with muscle IR 
and 83 individuals with liver IR that were included in the 
analyses.

Baseline characteristics
Table 2 shows anthropometrics, body composition, glu-
cose homeostasis, cardiometabolic parameters, medical 
history, and lifestyle factors according to IR phenotype. 
Sex-stratified characteristics according to IR phenotype 
are reported in Additional file  2:  Table  S1. The partici-
pants’ mean (± SD) age was 60 ± 8  years, and 61% were 
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Table 2 Demographic, clinical, and metabolic characteristics of the study population according to IR phenotype

Muscle IR (n = 131) Liver IR (n = 83) p

Age, years 60 ± 8 59 ± 7 0.33

Women, n (%) 84 (64.1%) 46 (55.4%) 0.25

BMI, kg/m2 29.6 ± 3.3 30.7 ± 3.8 0.033

Waist circumference, cm 101.0 ± 8.8 103.8 ± 10.8 0.034

Body composition

 Body fat, % 38.3 ± 7.5 37.0 ± 7.0 0.20

 Android fat, % 10.2 ± 1.8 10.2 ± 1.7 0.90

 Gynoid fat, % 15.9 ± 2.1 15.7 ± 2.0 0.44

 VAT,  La 5.4 ± 2.2 6.1 ± 2.1 0.12

 VAT,  cm2 b 163 [119, 226] 176 [135, 200] 0.49

 Liver fat, %a 4.9 [2.6, 9.9] 5.7 [3.3, 14.8] 0.29

 Liver fat, %b 4.2 [1.4, 8.2] 2.4 [1.0, 5.2] 0.06

Glucose homeostasis

 Fasting glucose, mmol/L 5.3 [5.0, 5.6] 5.5 [5.1, 5.8] 0.014

 OGTT 2-h glucose, mmol/L 6.5 [5.4, 7.7] 5.7 [4.8, 6.9] 0.002

 Fasting insulin, pmol/L 44.7 [37.2, 60.1] 50.5 [41.0, 69.3] 0.012

 OGTT 2-h insulin, pmol/L 403.3 [264.5, 585.6] 309.5 [192.8, 571.6] 0.017

 HOMA-IR, AU 1.7 [1.3, 2.1] 1.9 [1.3, 2.5] 0.08

 HOMA-β, AU 76.4 [62.5, 96.1] 82.4 [64.5, 98.8] 0.54

 Matsuda index, AU 4.8 [3.5, 6.7] 4.2 [3.0, 6.5] 0.18

 Adipo-IR, AU 21.7 [15.0, 30.0] 23.7 [16.1, 39.4] 0.14

 MISI, AU 0.096 [0.068, 0.130] 0.135 [0.104, 0.183]  < 0.001

 HIRI, AU 356 [284, 432] 601 [467, 716]  < 0.001

Glucose status, n (%) 0.25

 NGT 101 (77.1%) 65 (78.3%)

 IGT 18 (13.7%) 6 (7.2%)

 IFG 2 (1.5%) 5 (6.0%)

 IGT + IFG 8 (6.1%) 5 (6.0%)

 T2DM 2 (1.5%) 2 (2.4%)

Cardiometabolic parameters

 Fasting serum TAG, mmol/L 1.3 [1.0, 1.7] 1.5 [1.0, 1.9] 0.22

 Fasting hypertriglyceridemia, n (%) 37 (28.2%) 30 (36.1%) 0.29

 Serum HDL cholesterol, mmol/L 1.3 ± 0.3 1.3 ± 0.3 0.34

 Serum total cholesterol, mmol/L 5.4 ± 1.0 5.5 ± 1.0 0.39

 Fasting plasma NEFA, mmol/L 0.50 ± 0.17 0.48 ± 0.16 0.42

 Plasma CRP, mg/L 1.4 [0.6, 2.5] 1.0 [0.5, 2.1] 0.045

Medical history

 Medication use, n (%)

  Antidepressants 7 (5.3%) 6 (7.2%) 0.57

  Antihypertensives 24 (18.3%) 10 (12.0%) 0.25

  Anti-inflammatory 15 (11.5%) 4 (4.8%) 0.14

  Other 41 (31.3%) 24 (28.9%) 0.76

 Family history of DM, n (%) 29 (22.1%) 18 (21.7%) 1.00

Lifestyle factors

 DHD2015-index, score 85.7 ± 15.4 81.3 ± 15.1 0.044

 Habitual fat intake, en% 37.3 ± 5.5 37.2 ± 6.5 0.87

 Habitual SFA intake, en% 13.6 ± 2.5 13.9 ± 3.1 0.48

 Habitual sugar intake, en% 19.8 ± 5.1 19.2 ± 6.7 0.44

 Habitual alcohol consumption, g 5.0 [1.7, 10.3] 6.1 [1.1, 14.7] 0.47

 Habitual physical activity, Baecke score 8.2 ± 1.1 8.4 ± 1.3 0.35



Page 6 of 17Gijbels et al. Cardiovascular Diabetology           (2024) 23:97 

women. Individuals with liver IR had higher BMI and 
waist circumference, lower plasma CRP and borderline 
lower liver fat (WUR subgroup) than those with muscle 
IR. In women only, VAT mass was higher in liver com-
pared to muscle IR. In line with the calculations of MISI 
and HIRI, fasting plasma glucose and insulin levels were 
higher in liver IR, which was due to differences in women 
only, and plasma glucose and insulin two hours after oral 
glucose load were higher in muscle IR, which was due to 
differences in men only. Body fat percentage and whole-
body insulin sensitivity—as determined by Matsuda 
index—were not different between muscle and liver IR in 
the total study population, but Matsuda index was lower 
in liver compared to muscle IR in women.

Glucose and insulin responses to the mixed meal in liver IR 
and muscle IR
After consumption of the mixed meal, plasma glu-
cose levels in muscle IR were higher one and two hours 
post-meal compared to liver IR (pcurve < 0.001) (Fig. 1A). 
Plasma insulin levels were higher in liver compared to 
muscle IR in the first hour, and were lower two hours 
post-meal (pcurve < 0.001). Total iAUCs of glucose 
(piAUC  = 0.26) and insulin (piAUC  = 0.75) did not differ 
between the IR phenotypes (Fig. 1B).

Fasting plasma metabolites in liver IR and muscle IR
We compared fasting plasma metabolites between indi-
viduals with muscle IR and liver IR and examined asso-
ciations of MISI and HIRI with fasting plasma metabolite 
concentrations (Additional file 2: Table S2). All analyses 
with a significant interaction between IR phenotype or 
MISI/HIRI and sex were performed with stratification for 
sex.

None of the 164 absolute plasma metabolite concen-
trations were significantly different between individuals 
with muscle or liver IR after FDR correction. One of the 
82 relative fasting metabolite measures showed a trend 
for a difference between muscle and liver IR in the fasting 
state (Additional file 1: Figs. S1–2), and a significant sex 
interaction was observed for this metabolite. The VLDL, 
LDL, and HDL particle sizes did not differ between 
IR phenotypes in the fasting state. The relative fasting 
metabolite measure that tended to differ between the IR 
phenotypes was the percentage of saturated fatty acid of 
total plasma FA (SFA%), which was higher in muscle IR 
(geometric mean 33.5%, 95% CI 33.2 to 33.9) compared 
to liver IR (32.5%, 32.1 to 32.9; p = 0.072), in men only 
(Additional file 1: Fig. S2 and Additional file 2: Table S2). 
Additional adjustment for habitual dietary intake of fat, 
SFA, linoleic acid (LA), or CHO did not affect this finding 
(data not shown).

Table 2 (continued)
Differences between IR phenotypes were assessed using independent t-test for normally distributed numerical data (mean ± SD), Mann–Whitney test for non-
normally distributed numerical data (median [25th percentile, 75th percentile], and using Fisher’s exact test for categorical data (n [%]). P-values < 0.05 are highlighted 
in bold

BMI body mass index, VAT visceral adipose tissue, OGTT  oral glucose tolerance test, HOMA-IR homeostatic model assessment of insulin resistance, HOMA-β 
homeostatic model assessment of β-cell function, Adipo-IR adipose tissue insulin resistance, MISI muscle insulin sensitivity index, HIRI hepatic insulin resistance index, 
NGT normal glucose tolerant, IGT impaired glucose tolerance, IFG impaired fasting glucose, T2DM type 2 diabetes mellitus, TAG  triacylglycerol, NEFA non-esterified 
fatty acids, CRP C-reactive protein, DHD2015-index Dutch Healthy Diet 2015 index, SFA saturated fatty acids
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Fig. 1 Plasma glucose (A) and insulin (B) responses to consumption of the high-fat mixed meal in individuals with liver IR or muscle IR. Responses 
were defined as change from fasting (value at postprandial timepoint—fasting value), and data are shown as means with 95% confidence intervals. 
Differences between liver IR and muscle IR were tested using linear mixed-effects models with adjustment for age, sex, center, and BMI. Significant 
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Associations between MISI and HIRI with fasting plasma 
metabolites
Both MISI and HIRI were not significantly associated 
to any of the 164 absolute fasting plasma metabolite 
concentrations after FDR correction. Out of the 82 rela-
tive metabolite measures, MISI was associated with one 
metabolite measure and HIRI with none. Both indices 
were not associated with the three particle sizes. The one 
metabolite that MISI was positively associated with was 
the percentage of LA (LA%) of total plasma FA, but only 
in women (std. β 0.320, 0.167 to 0.490, p = 0.024) (Addi-
tional file  1: Fig. S2, Additional file  2: Table  S2). Addi-
tional adjustment for habitual dietary intake of fat, SFA, 
LA, or carbohydrates did not affect this association (data 
not shown).

Postprandial metabolite responses in liver IR and muscle IR
Next, we compared the postprandial plasma metabolite 
responses between individuals with muscle IR and liver 
IR by testing differences in the iAUCs and postprandial 
curves after the mixed meal between the IR phenotypes. 
In addition, we examined associations of MISI and HIRI 
with postprandial plasma metabolite iAUCs. Analyses 
with a significant interaction between IR phenotype or 
MISI/HIRI and sex were performed with stratification for 
sex. All results can be found in Additional file 2: Tables 
S3-S4.

Forty-four out of 164 absolute metabolite iAUCs dif-
fered significantly between muscle and liver IR, of which 
nine only in women (Additional file 1: Fig. S1). Twenty-
four of the 82 relative metabolite iAUCs differed signifi-
cantly between muscle and liver IR, of which one only in 
women (Additional file 1: Fig. S1). VLDL, LDL, and HDL 
particle sizes did not differ postprandially between IR 
phenotypes.

Out of the 44 absolute metabolite iAUCs that differed 
between the IR phenotypes, a majority was larger in liver 
compared to muscle IR. Postprandial iAUCs of XL VLDL 
(piAUC  = 0.002), L VLDL (piAUC  = 0.004), and M LDL par-
ticle concentrations (piAUC  = 0.026), as well as their TAG 
and cholesterol content (all p < 0.03) were higher in liver 
compared to muscle IR, while postprandial intermedi-
ate-density lipoprotein (IDL) particle concentrations 
(piAUC  = 0.047) were lower in liver compared to muscle 
IR (Fig.  2; Additional file  1: Figs.  S3–S4). Furthermore, 

iAUCs of postprandial total TAG (piAUC  = 0.004), 
and TAG in total VLDL (piAUC  = 0.003), S VLDL 
(piAUC  = 0.025), total LDL (piAUC  = 0.009), all LDL sub-
classes (all piAUC  < 0.05), and S HDL (piAUC  = 0.011) were 
higher in liver compared to muscle IR (Figs. 2; Additional 
file 1: Fig. S4).

As for the lipid composition of lipoproteins, the iAUC 
of the postprandial percentage of TAG (TAG%) was 
higher and that of cholesterol esters (CE%) was lower 
in XS VLDL and IDL in liver compared to muscle IR 
(all piAUC  < 0.05). In addition, the iAUCs of postprandial 
TAG% in S HDL and CE% in L and M LDL were higher 
in liver compared to muscle IR (Figs. 3; Additional file 1: 
Fig. S4).

Postprandial plasma fatty acid (FA) profiles also differed 
between the IR phenotypes, with higher postprandial 
iAUCs of total FA (piAUC  = 0.018), total monounsatu-
rated fatty acids (MUFA) (piAUC  = 0.005) and total SFA 
(piAUC  = 0.007) in liver compared to muscle IR (Fig. 4 and 
Additional file 1: Fig. S5). Postprandial total SFA% iAUC 
was higher (piAUC  = 0.013), and total polyunsaturated 
fatty acid (PUFA)% iAUC was lower in liver compared 
to muscle IR (piAUC  = 0.008), as were iAUCs of the per-
centages of the PUFAs omega-6 FA (piAUC  = 0.007), and 
LA (piAUC  = 0.008) (Fig. 4 and Additional file 1: Fig. S5). 
Additional adjustment for habitual dietary intake of fat, 
SFA, or LA did not affect these results (data not shown).

Ten of the 68 observed differences in postprandial 
metabolite iAUCs between the IR phenotypes were 
found in women only. These include higher iAUCs of 
postprandial TAG in M VLDL (piAUC  = 0.007), choles-
terol and cholesteryl esters in M LDL (piAUC  = 0.010 and 
piAUC  = 0.006, respectively) and S LDL (piAUC  = 0.021 and 
piAUC  = 0.010, respectively) in liver compared to muscle 
IR (Additional file  1: Fig. S3). In addition, postprandial 
MUFA% iAUC was higher in liver compared to muscle IR 
(piAUC  = 0.008).

Postprandial iAUCs of (branched-chain) amino acids, 
ketone bodies, glycolysis-related metabolites, or other 
metabolites did not differ between muscle IR and liver IR 
(Fig. 4).

We additionally performed multivariate analysis via 
RM-ASCA + to investigate differences in overall post-
prandial metabolite curve shapes between IR pheno-
types. PCA analysis of the RM-ASCA + results was used 

(See figure on next page.)
Fig. 2 Postprandial (iAUC) lipoprotein particle concentrations and triglycerides (TAG) in muscle and liver IR. Left: associations of MISI with plasma 
metabolite iAUCs. Middle: associations of HIRI with plasma metabolite iAUCs. Right: plasma metabolite iAUCs in muscle compared to liver IR. 
Associations between MISI/HIRI and plasma metabolites were tested using linear regression analyses with adjustment for age, sex, center, BMI, 
waist-to-hip ratio, and HIRI/MISI. Differences between muscle and liver IR were tested using ANCOVA with adjustment for age, sex, center, BMI, 
and waist-to-hip ratio. P-values were adjusted for a false discovery rate (FDR) of 0.05 using the Benjamini Hochberg method
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to summarize the differences in postprandial metabo-
lite response in liver IR as compared to muscle IR. 
Two patterns were identified: PC1 and PC2 (Fig.  5A). 
PC1 (explained variance [95% CI] 78.7% [61.5–88.6%]) 
reflects a continuously larger postprandial increase in 
metabolite concentrations in liver compared to muscle 

IR in case of positive loadings, and the inverse pat-
tern in case of negative loadings (i.e. a continuously 
larger postprandial decrease in metabolite concen-
trations in liver compared to muscle IR). This pattern 
was observed for 109 metabolites, of which 44 did not 
differ between IR phenotypes when comparing iAUCs 
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Hochberg method
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between IR phenotypes, and were thus only identified 
as different when comparing curve shapes. Metabo-
lites with positive loadings included XXL VLDL par-
ticles and chylomicrons and their lipid content, TAG 
in IDL and HDL particles, VLDL size, and glycopro-
tein acetylation (GlycA), indicating larger postprandial 
increases in liver compared to muscle IR. Metabolites 
with negative loadings include LDL size, indicating the 
inverse pattern (Fig.  5B and Additional file  1: Fig.  S6). 
PC2 (21.3% [11.4–38.5%] explained variance) reflects 
a larger decrease at 1–2  h postprandially, followed by 
a steeper increase at 4  h postprandially in liver com-
pared to muscle IR in case of positive loadings, and 
the inverse pattern in case of negative loadings. This 
pattern was observed for 41 metabolites, of which 22 
were only identified to be different when comparing 
postprandial curve shape as they did not have different 
iAUCs between IR phenotypes. Metabolites with posi-
tive loadings included histidine, XL HDL particle con-
centrations and their lipid content, HDL size, and the 
cholesterol and cholesteryl ester fraction of VLDL par-
ticles (Fig.  5B and Additional file  1: Fig.  S6). Metabo-
lites with negative loadings included pyruvate, lactate, 
tyrosine, and the TAG fraction of VLDL particles. A 
plot with all metabolites that significantly contributed 
to PC1 and/or PC2 is shown in Additional file 1: Fig. S7.

Associations between MISI and HIRI with postprandial 
plasma metabolites
We also examined associations of MISI and HIRI with 
postprandial plasma metabolite iAUCs. HIRI was 
associated with three of the 164 absolute postprandial 
metabolite responses, of which one in women only, and 
17 of the 82 relative metabolite measures, of which 11 
in women only (Additional file  1:  Fig. S1). MISI was 
not significantly associated to any of the postprandial 
metabolite responses after adjustment for multiple 
testing.

As for the three absolute postprandial metabolite 
responses, HIRI was positively associated to postpran-
dial TAG in S LDL (p = 0.043), XL HDL (p = 0.043), and 
S VLDL particles (p = 0.034), the latter in women only 
(Fig.  2). For the 17 relative metabolite responses, HIRI 
was positively associated to TAG% in S LDL, M LDL, 
and S HDL particles (all p = 0.043) (Fig.  3), and nega-
tively associated to cholesterol and cholesteryl esters in 
IDL and fatty acid omega-6 fraction (all p = 0.043). In 
addition, in women only, HIRI was positively associated 
to postprandial MUFA%, TAG% in S and XS VLDL, and 
negatively to cholesterol % and free cholesterol % in S and 
XS VLDL, CE% in XS VLDL, and phospholipids % in S 
VLDL (Fig. 3).

Discussion
We investigated fasting and postprandial plasma metab-
olite profiles in tissue-specific IR. To this end, we meas-
ured 164 plasma metabolites, including lipoproteins, 
apolipoproteins, cholesterol, TAG, ketone bodies, and 
amino acids, for four hours after a high-fat mixed meal in 
individuals with predominant muscle IR or liver IR. Com-
pared to individuals with muscle IR, individuals with liver 
IR had greater postprandial increases in concentrations 
of very large and large VLDL particles and medium-sized 
LDL particles, and lower postprandial plasma concentra-
tions of IDL particles, while fasting lipoprotein profiles 
did not differ between IR phenotypes. In addition, indi-
viduals with liver IR had greater postprandial increases 
in TAG in very large, large, and small VLDL particles, 
all LDL subclasses, and small HDL, compared to those 
with muscle IR. Furthermore, postprandial plasma SFA 
and MUFA were higher, and total FA consisted of a larger 
percentage of SFA, and a lower percentage of PUFA post-
prandially in liver compared to muscle IR.

Elevated postprandial total TAG concentrations in liver 
compared to muscle IR have been reported previously 
[6]. To our knowledge, this study is the first to examine 
circulating lipoprotein subclasses and their composition 
in response to a high-fat mixed meal in tissue-specific IR. 
Compared to muscle IR, liver IR was characterized by a 
larger postprandial increase in plasma particle concentra-
tions of large and very large VLDL particles, which was 
paralleled by larger increases in the TAG and cholesterol 
content of these VLDL subclasses. This greater postpran-
dial increase can result from higher VLDL production, 
reduced clearance, or both. Studies that measured VLDL 
kinetics using stable isotope tracers have previously 
shown that IR, as assessed by HOMA-IR, which mainly 
reflects hepatic IR, was associated with increased hepatic 
production of large, TAG-rich VLDL [27, 28]. Hence, 
the greater postprandial increase in large and very large 
VLDL particles that we observed in people with liver IR 
may be due to larger hepatic VLDL production. There 
may be several mechanistic explanations for the greater 
production of large and very large VLDL particles in liver 
IR. Firstly, in healthy, insulin-sensitive individuals, insulin 
can directly inhibit VLDL production, partly by promot-
ing the hepatic degradation of ApoB [29–32]. Hence, in 
liver IR, impaired insulin-mediated suppression of VLDL 
assembly and secretion may contribute to elevated post-
prandial VLDL levels, while this suppression is likely 
better maintained in individuals with predominant mus-
cle IR. Secondly, insulin can increase VLDL production 
by inducing de novo lipogenesis (DNL) via activation of 
sterol regulatory element binding protein-1c (SREBP-1c), 
thereby promoting lipid synthesis [3]. This hepatic insulin 
action appears to be (largely) preserved in liver IR [33]. 
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Higher hepatic IR, as measured with the gold-standard 
hyperinsulinemic-euglycemic clamp method, has indeed 
been positively associated to the relative contribution of 
hepatic DNL to plasma TAG in TAG-rich lipoproteins, 
indicating elevated DNL [34]. In the present study, indi-
viduals with liver IR had greater insulin excursions in the 
first hour after the meal, which may have contributed to 
greater VLDL production by increased DNL.

In addition to elevated postprandial VLDL-TAG in 
liver IR, liver IR was also characterized by higher post-
prandial TAG content in smaller LDL and HDL particles. 
As this was not paralleled by larger increases in parti-
cle concentrations, these lipoprotein subclasses were 
likely enriched in TAG in liver IR. In line with this, HIRI 
was positively associated to the TAG fraction of total 
lipid content in the smaller LDL and HDL subclasses. 
A potential explanation might be enhanced transfer of 
TAG from TAG-rich large and very large VLDL particles 
to LDL and HDL particles by increased activity of the 
enzyme cholesteryl ester transfer protein (CETP). CETP 
facilitates the transfer of TAG from large VLDL to LDL 
and HDL in exchange for CE, resulting in TAG-enriched 
LDL and HDL [35]. CETP activity has been shown to be 
mainly determined by plasma TAG levels, rather than 
by IR [36, 37], which indicates that potentially increased 
CETP action in individuals with liver IR may be primar-
ily attributable to the increased postprandial TAG in the 
circulation, and not to the hepatic IR itself.

Furthermore, liver IR was characterized by higher post-
prandial TAG fraction in IDL and smaller VLDL parti-
cles as compared to muscle IR. A higher TAG fraction 
in these particles, which are the VLDL remnants, may 
point towards reduced lipoprotein lipase (LPL)-mediated 
lipolysis of TAG in peripheral tissues in liver compared 
to muscle IR. IR has indeed been associated to lower LPL 
activity or expression in adipose tissue and skeletal mus-
cle [38–40]. As far as we know, LPL activity has not been 
investigated in tissue-specific IR yet.

In liver compared to muscle IR, the postprandial 
plasma FA profile was characterized by greater total FA, 
SFA, and MUFA concentrations, a lower percentage 
of PUFA of total FA, and a higher percentage of SFA of 
total FA after mixed-meal ingestion. These results were 
independent of habitual dietary intake of fat, SFA, or LA, 
as assessed by FFQ. DNL produces mainly SFA, which 
can subsequently be desaturated to MUFA in the liver 
[41–43]. The higher early postprandial insulin response 
in individuals with liver IR may have promoted DNL as 
described above, thereby contributing to a greater post-
prandial increase in SFA. Recently, the proportion of 
SFA in VLDL has been reported to strongly correlate to 
the hepatic SFA fraction and, in turn, a higher hepatic 
SFA fraction to correlate to more severe hepatic IR [44]. 

Hence, higher hepatic SFA availability might also have 
contributed to the elevated postprandial plasma SFA in 
liver IR.

Using multivariate analysis of the postprandial metab-
olite curves, we additionally identified differences in 
postprandial metabolite curve shapes between the IR 
phenotypes for GlycA. GlycA is a relatively novel inflam-
matory biomarker that reflects the abundance of glycan 
groups of several acute-phase proteins [45]. Individu-
als with liver IR had larger postprandial GlycA increases 
than those with muscle IR. This difference may possibly 
be (partly) attributed to the observed greater postpran-
dial TAG in liver as compared to muscle IR, since GlycA 
response to a mixed meal has recently been shown to 
strongly correlate to postprandial TAG peak [46].

Both liver and muscle IR have previously been associ-
ated with elevated fasting levels of the amino acids ala-
nine, valine, and isoleucine, while liver IR, but not muscle 
IR has been additionally associated with higher circu-
lating leucine and tyrosine, as well as lower circulating 
ketone bodies [5]. In the present study, we observed simi-
lar inverse associations between MISI and fasting plasma 
isoleucine and alanine, although these were no longer 
statistically significant after adjustment for multiple test-
ing. Other associations could (also) not be replicated. An 
important explanation for these incongruencies may be 
differences in the study population: we selected individu-
als with predominant muscle or liver IR, thus excluding 
insulin-sensitive individuals and individuals with com-
bined muscle and liver IR, resulting in a smaller range 
of MISI and HIRI. This may also explain why we found 
more metabolites to significantly differ between individu-
als with liver or muscle IR than in the associations with 
MISI and HIRI. In addition, the cohorts used by Vog-
elzangs et al. [5] were much larger (n = 634 and n = 540) 
than our study population.

It is well established that sex differences in lipid metab-
olism exist, which may contribute to differences in the 
aetiology of chronic cardiometabolic diseases between 
men and women [47]. Interestingly, we also observed sex 
differences, with a more pronounced link between liver 
IR and postprandial lipid profile in women compared 
to men. In line with this, women with liver IR had more 
VAT and lower whole-body insulin sensitivity compared 
to women with muscle IR, while these parameters did not 
differ between IR phenotypes in men. Although women 
generally have a more favourable plasma lipid profile 
than men, various studies indicate that in impaired meta-
bolic health, i.e. obesity or T2DM, women have greater 
abnormalities in lipid and lipoprotein metabolism than 
men [48–53]. Similarly, hepatic IR has previously been 
associated with plasma lipid abnormalities in the fast-
ing state—including elevated TAG, DAG, and BCAA—in 
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women, and not in men [4, 5]. Lipid metabolism in 
women is also affected by sex hormones and menopau-
sal state [47]. Most women in our study (84%) were post-
menopausal, and the limited number of premenopausal 
women (n = 21) did not allow for performing stratified 
analyses. The observed sex differences in the relationship 
between tissue-specific IR and postprandial lipoprotein 
profile highlight the importance of taking sexual dimor-
phism into account and warrant further research to eluci-
date underlying mechanisms.

The lipoprotein profile we observed in liver compared 
to muscle IR—elevated postprandial TAG in larger 
VLDL, LDL, and smaller HDL particles—is common 
in IR and T2DM [30, 31, 54, 55]. Such a lipid profile is 
considered to be highly atherogenic and has consistently 
been associated with increased CVD risk [7–9, 56, 57]. 
Our findings show that this postprandial lipid profile is 
specifically related to liver IR, and less so to muscle IR, 
despite similar body fat percentage, liver fat, and whole-
body insulin sensitivity, and lower systemic low-grade 
inflammation, as indicated by lower circulating CRP lev-
els. Humans typically spend the majority of the day in the 
postprandial state due to frequent eating occasions. Even 
in healthy, insulin-sensitive individuals, plasma TAG lev-
els progressively rise throughout the day upon repeated 
meal consumption, returning only to fasting levels dur-
ing sleep [58]. Thus, individuals with liver IR may be at 
increased risk of developing cardiometabolic disease, 
compared to individuals with muscle IR.

Interestingly, the more unfavorable lipoprotein profile 
in liver compared to muscle IR was not observed in the 
fasting state. Differences between IR phenotypes only 
became apparent after challenging homeostasis with a 
high-fat mixed meal. In both individuals with liver and 
muscle IR, the majority had fasting TAG concentra-
tions in the normal range (< 1.7  mmol/L): 72% in mus-
cle IR and 64% in liver IR. In addition, a large majority 
was normoglycemic: 77% in muscle IR and 78% in liver 
IR. These findings thus indicate that liver IR, in particu-
lar, is accompanied by early perturbations in postprandial 
lipid metabolism that are not evident in the fasting state 
yet compared to muscle IR. Detection of metabolic per-
turbations at this early stage—before the onset of overt 
metabolic disease—provides an opportunity for timely 
prevention of progression to cardiometabolic disease by 
lifestyle interventions such as dietary modification, exer-
cise, and weight loss.

A major strength of this study is the extensive meta-
bolic profiling of tissue-specific IR in both the fasting and 
the postprandial state, thereby broadening and deepening 
the characterization of plasma lipid profiles in tissue-spe-
cific IR and providing more insights into the metabolic 
abnormalities that are related to muscle or liver IR. It is 

as of yet unknown whether dysregulated lipid metabo-
lism is a cause or consequence of hepatic IR. Due to the 
cross-sectional design of this study, we cannot make any 
causal inferences about the nature of the observed rela-
tionship between tissue-specific IR and postprandial 
plasma lipid profiles. Another limitation of this study is 
the use of OGTT-derived measures for the assessment 
of tissue-specific IR. Postprandial glycemic and insulin 
responses are also affected by gastrointestinal factors 
such as gastric emptying and the incretin response [59]. 
Therefore, MISI and HIRI provide a less precise estima-
tion of tissue-specific IR compared to the gold-standard 
two-step hyperinsulinemic-euglycemic clamp. Neverthe-
less, these indices have been validated against the gold-
standard clamp [14] and we have previously shown that 
using these OGTT-derived measures, we could identify 
distinct metabolic phenotypes in various cohorts [4, 5, 
60]. In addition, our study population consisted only of 
individuals with some degree of tissue-specific IR. There-
fore, we cannot conclude anything on postprandial meta-
bolic profiles in tissue-specific IR as compared to healthy, 
insulin-sensitive controls. Finally, we sampled blood until 
four hours after consumption of the meal, at which many 
plasma lipids are at their peak. Future studies would ben-
efit from longer sampling times until 6–8 h post-meal to 
allow for examination of the (rate of ) return to fasting 
levels or the effects of a second meal.

Conclusion
In conclusion, individuals with liver IR or muscle IR have 
distinct postprandial plasma metabolite responses after 
a mixed meal, despite similar fasting metabolite profiles, 
body fat percentage, and whole-body insulin sensitiv-
ity. Liver IR was characterized by greater postprandial 
increases in larger VLDL particles, as well as in TAG 
in the larger VLDL and the smaller LDL and HDL sub-
classes, compared to muscle IR, which points towards 
more impaired hepatic lipid metabolism in liver com-
pared to muscle IR. Therefore, improving postprandial 
lipid metabolism with lifestyle modifications to prevent 
the development of cardiometabolic disease may be par-
ticularly important for individuals with predominant 
liver IR.
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